This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashen1 | |- ( A e. V -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | hashsng | |- ( (/) e. _V -> ( # ` { (/) } ) = 1 ) |
|
| 3 | 1 2 | ax-mp | |- ( # ` { (/) } ) = 1 |
| 4 | 3 | eqcomi | |- 1 = ( # ` { (/) } ) |
| 5 | 4 | a1i | |- ( A e. V -> 1 = ( # ` { (/) } ) ) |
| 6 | 5 | eqeq2d | |- ( A e. V -> ( ( # ` A ) = 1 <-> ( # ` A ) = ( # ` { (/) } ) ) ) |
| 7 | simpr | |- ( ( A e. V /\ ( # ` A ) = ( # ` { (/) } ) ) -> ( # ` A ) = ( # ` { (/) } ) ) |
|
| 8 | 1nn0 | |- 1 e. NN0 |
|
| 9 | 3 8 | eqeltri | |- ( # ` { (/) } ) e. NN0 |
| 10 | hashvnfin | |- ( ( A e. V /\ ( # ` { (/) } ) e. NN0 ) -> ( ( # ` A ) = ( # ` { (/) } ) -> A e. Fin ) ) |
|
| 11 | 9 10 | mpan2 | |- ( A e. V -> ( ( # ` A ) = ( # ` { (/) } ) -> A e. Fin ) ) |
| 12 | 11 | imp | |- ( ( A e. V /\ ( # ` A ) = ( # ` { (/) } ) ) -> A e. Fin ) |
| 13 | snfi | |- { (/) } e. Fin |
|
| 14 | hashen | |- ( ( A e. Fin /\ { (/) } e. Fin ) -> ( ( # ` A ) = ( # ` { (/) } ) <-> A ~~ { (/) } ) ) |
|
| 15 | 12 13 14 | sylancl | |- ( ( A e. V /\ ( # ` A ) = ( # ` { (/) } ) ) -> ( ( # ` A ) = ( # ` { (/) } ) <-> A ~~ { (/) } ) ) |
| 16 | 7 15 | mpbid | |- ( ( A e. V /\ ( # ` A ) = ( # ` { (/) } ) ) -> A ~~ { (/) } ) |
| 17 | 16 | ex | |- ( A e. V -> ( ( # ` A ) = ( # ` { (/) } ) -> A ~~ { (/) } ) ) |
| 18 | hasheni | |- ( A ~~ { (/) } -> ( # ` A ) = ( # ` { (/) } ) ) |
|
| 19 | 17 18 | impbid1 | |- ( A e. V -> ( ( # ` A ) = ( # ` { (/) } ) <-> A ~~ { (/) } ) ) |
| 20 | df1o2 | |- 1o = { (/) } |
|
| 21 | 20 | eqcomi | |- { (/) } = 1o |
| 22 | 21 | breq2i | |- ( A ~~ { (/) } <-> A ~~ 1o ) |
| 23 | 22 | a1i | |- ( A e. V -> ( A ~~ { (/) } <-> A ~~ 1o ) ) |
| 24 | 6 19 23 | 3bitrd | |- ( A e. V -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |