This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hash1elsn.1 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 1 ) | |
| hash1elsn.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| hash1elsn.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | hash1elsn | ⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash1elsn.1 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 1 ) | |
| 2 | hash1elsn.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | hash1elsn.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | hashen1 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) |
| 6 | 1 5 | mpbid | ⊢ ( 𝜑 → 𝐴 ≈ 1o ) |
| 7 | en1 | ⊢ ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐴 = { 𝑥 } ) | |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 ∈ 𝐴 ) |
| 11 | 10 9 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 ∈ { 𝑥 } ) |
| 12 | elsni | ⊢ ( 𝐵 ∈ { 𝑥 } → 𝐵 = 𝑥 ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐵 = 𝑥 ) |
| 14 | 13 | sneqd | ⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → { 𝐵 } = { 𝑥 } ) |
| 15 | 9 14 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐴 = { 𝑥 } ) → 𝐴 = { 𝐵 } ) |
| 16 | 8 15 | exlimddv | ⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |