This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdifsnp1 | |- ( ( V e. W /\ N e. V /\ Y e. NN0 ) -> ( ( # ` V ) = ( Y + 1 ) -> ( # ` ( V \ { N } ) ) = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | |- ( Y e. NN0 -> ( Y + 1 ) e. NN0 ) |
|
| 2 | eleq1a | |- ( ( Y + 1 ) e. NN0 -> ( ( # ` V ) = ( Y + 1 ) -> ( # ` V ) e. NN0 ) ) |
|
| 3 | 2 | adantr | |- ( ( ( Y + 1 ) e. NN0 /\ V e. W ) -> ( ( # ` V ) = ( Y + 1 ) -> ( # ` V ) e. NN0 ) ) |
| 4 | 3 | imp | |- ( ( ( ( Y + 1 ) e. NN0 /\ V e. W ) /\ ( # ` V ) = ( Y + 1 ) ) -> ( # ` V ) e. NN0 ) |
| 5 | hashclb | |- ( V e. W -> ( V e. Fin <-> ( # ` V ) e. NN0 ) ) |
|
| 6 | 5 | ad2antlr | |- ( ( ( ( Y + 1 ) e. NN0 /\ V e. W ) /\ ( # ` V ) = ( Y + 1 ) ) -> ( V e. Fin <-> ( # ` V ) e. NN0 ) ) |
| 7 | 4 6 | mpbird | |- ( ( ( ( Y + 1 ) e. NN0 /\ V e. W ) /\ ( # ` V ) = ( Y + 1 ) ) -> V e. Fin ) |
| 8 | 7 | ex | |- ( ( ( Y + 1 ) e. NN0 /\ V e. W ) -> ( ( # ` V ) = ( Y + 1 ) -> V e. Fin ) ) |
| 9 | 8 | ex | |- ( ( Y + 1 ) e. NN0 -> ( V e. W -> ( ( # ` V ) = ( Y + 1 ) -> V e. Fin ) ) ) |
| 10 | 1 9 | syl | |- ( Y e. NN0 -> ( V e. W -> ( ( # ` V ) = ( Y + 1 ) -> V e. Fin ) ) ) |
| 11 | 10 | impcom | |- ( ( V e. W /\ Y e. NN0 ) -> ( ( # ` V ) = ( Y + 1 ) -> V e. Fin ) ) |
| 12 | 11 | 3adant2 | |- ( ( V e. W /\ N e. V /\ Y e. NN0 ) -> ( ( # ` V ) = ( Y + 1 ) -> V e. Fin ) ) |
| 13 | 12 | imp | |- ( ( ( V e. W /\ N e. V /\ Y e. NN0 ) /\ ( # ` V ) = ( Y + 1 ) ) -> V e. Fin ) |
| 14 | snssi | |- ( N e. V -> { N } C_ V ) |
|
| 15 | 14 | 3ad2ant2 | |- ( ( V e. W /\ N e. V /\ Y e. NN0 ) -> { N } C_ V ) |
| 16 | 15 | adantr | |- ( ( ( V e. W /\ N e. V /\ Y e. NN0 ) /\ ( # ` V ) = ( Y + 1 ) ) -> { N } C_ V ) |
| 17 | hashssdif | |- ( ( V e. Fin /\ { N } C_ V ) -> ( # ` ( V \ { N } ) ) = ( ( # ` V ) - ( # ` { N } ) ) ) |
|
| 18 | 13 16 17 | syl2anc | |- ( ( ( V e. W /\ N e. V /\ Y e. NN0 ) /\ ( # ` V ) = ( Y + 1 ) ) -> ( # ` ( V \ { N } ) ) = ( ( # ` V ) - ( # ` { N } ) ) ) |
| 19 | oveq1 | |- ( ( # ` V ) = ( Y + 1 ) -> ( ( # ` V ) - ( # ` { N } ) ) = ( ( Y + 1 ) - ( # ` { N } ) ) ) |
|
| 20 | hashsng | |- ( N e. V -> ( # ` { N } ) = 1 ) |
|
| 21 | 20 | oveq2d | |- ( N e. V -> ( ( Y + 1 ) - ( # ` { N } ) ) = ( ( Y + 1 ) - 1 ) ) |
| 22 | 21 | 3ad2ant2 | |- ( ( V e. W /\ N e. V /\ Y e. NN0 ) -> ( ( Y + 1 ) - ( # ` { N } ) ) = ( ( Y + 1 ) - 1 ) ) |
| 23 | nn0cn | |- ( Y e. NN0 -> Y e. CC ) |
|
| 24 | 1cnd | |- ( Y e. NN0 -> 1 e. CC ) |
|
| 25 | 23 24 | pncand | |- ( Y e. NN0 -> ( ( Y + 1 ) - 1 ) = Y ) |
| 26 | 25 | 3ad2ant3 | |- ( ( V e. W /\ N e. V /\ Y e. NN0 ) -> ( ( Y + 1 ) - 1 ) = Y ) |
| 27 | 22 26 | eqtrd | |- ( ( V e. W /\ N e. V /\ Y e. NN0 ) -> ( ( Y + 1 ) - ( # ` { N } ) ) = Y ) |
| 28 | 19 27 | sylan9eqr | |- ( ( ( V e. W /\ N e. V /\ Y e. NN0 ) /\ ( # ` V ) = ( Y + 1 ) ) -> ( ( # ` V ) - ( # ` { N } ) ) = Y ) |
| 29 | 18 28 | eqtrd | |- ( ( ( V e. W /\ N e. V /\ Y e. NN0 ) /\ ( # ` V ) = ( Y + 1 ) ) -> ( # ` ( V \ { N } ) ) = Y ) |
| 30 | 29 | ex | |- ( ( V e. W /\ N e. V /\ Y e. NN0 ) -> ( ( # ` V ) = ( Y + 1 ) -> ( # ` ( V \ { N } ) ) = Y ) ) |