This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hash1elsn.1 | ||
| hash1elsn.2 | |||
| hash1elsn.3 | |||
| Assertion | hash1elsn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash1elsn.1 | ||
| 2 | hash1elsn.2 | ||
| 3 | hash1elsn.3 | ||
| 4 | hashen1 | ||
| 5 | 3 4 | syl | |
| 6 | 1 5 | mpbid | |
| 7 | en1 | ||
| 8 | 6 7 | sylib | |
| 9 | simpr | ||
| 10 | 2 | adantr | |
| 11 | 10 9 | eleqtrd | |
| 12 | elsni | ||
| 13 | 11 12 | syl | |
| 14 | 13 | sneqd | |
| 15 | 9 14 | eqtr4d | |
| 16 | 8 15 | exlimddv |