This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hash1elsn.1 | |- ( ph -> ( # ` A ) = 1 ) |
|
| hash1elsn.2 | |- ( ph -> B e. A ) |
||
| hash1elsn.3 | |- ( ph -> A e. V ) |
||
| Assertion | hash1elsn | |- ( ph -> A = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash1elsn.1 | |- ( ph -> ( # ` A ) = 1 ) |
|
| 2 | hash1elsn.2 | |- ( ph -> B e. A ) |
|
| 3 | hash1elsn.3 | |- ( ph -> A e. V ) |
|
| 4 | hashen1 | |- ( A e. V -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |
|
| 5 | 3 4 | syl | |- ( ph -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |
| 6 | 1 5 | mpbid | |- ( ph -> A ~~ 1o ) |
| 7 | en1 | |- ( A ~~ 1o <-> E. x A = { x } ) |
|
| 8 | 6 7 | sylib | |- ( ph -> E. x A = { x } ) |
| 9 | simpr | |- ( ( ph /\ A = { x } ) -> A = { x } ) |
|
| 10 | 2 | adantr | |- ( ( ph /\ A = { x } ) -> B e. A ) |
| 11 | 10 9 | eleqtrd | |- ( ( ph /\ A = { x } ) -> B e. { x } ) |
| 12 | elsni | |- ( B e. { x } -> B = x ) |
|
| 13 | 11 12 | syl | |- ( ( ph /\ A = { x } ) -> B = x ) |
| 14 | 13 | sneqd | |- ( ( ph /\ A = { x } ) -> { B } = { x } ) |
| 15 | 9 14 | eqtr4d | |- ( ( ph /\ A = { x } ) -> A = { B } ) |
| 16 | 8 15 | exlimddv | |- ( ph -> A = { B } ) |