This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a restricted class abstraction restricted to a singleton is a nonnegative integer. (Contributed by Alexander van der Vekens, 22-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashrabrsn | ⊢ ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } | |
| 2 | rabrsn | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) ) | |
| 3 | fveq2 | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = ( ♯ ‘ ∅ ) ) | |
| 4 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 5 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 6 | 4 5 | eqeltri | ⊢ ( ♯ ‘ ∅ ) ∈ ℕ0 |
| 7 | 3 6 | eqeltrdi | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) ∈ ℕ0 ) |
| 8 | fveq2 | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = ( ♯ ‘ { 𝐴 } ) ) | |
| 9 | hashsng | ⊢ ( 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 1 ) | |
| 10 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 11 | 9 10 | eqeltrdi | ⊢ ( 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) ∈ ℕ0 ) |
| 12 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 13 | fveq2 | ⊢ ( { 𝐴 } = ∅ → ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ ∅ ) ) | |
| 14 | 13 6 | eqeltrdi | ⊢ ( { 𝐴 } = ∅ → ( ♯ ‘ { 𝐴 } ) ∈ ℕ0 ) |
| 15 | 12 14 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) ∈ ℕ0 ) |
| 16 | 11 15 | pm2.61i | ⊢ ( ♯ ‘ { 𝐴 } ) ∈ ℕ0 |
| 17 | 8 16 | eqeltrdi | ⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) ∈ ℕ0 ) |
| 18 | 7 17 | jaoi | ⊢ ( ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) ∈ ℕ0 ) |
| 19 | 1 2 18 | mp2b | ⊢ ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) ∈ ℕ0 |