This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harval2 | ⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harval | ⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝐴 } ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ) → ( har ‘ 𝐴 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝐴 } ) |
| 3 | sdomel | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ≺ 𝑥 → 𝑦 ∈ 𝑥 ) ) | |
| 4 | domsdomtr | ⊢ ( ( 𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥 ) → 𝑦 ≺ 𝑥 ) | |
| 5 | 3 4 | impel | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥 ) ) → 𝑦 ∈ 𝑥 ) |
| 6 | 5 | an4s | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ) → 𝑦 ∈ 𝑥 ) |
| 7 | 6 | ancoms | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ∧ ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) → 𝑦 ∈ 𝑥 ) |
| 8 | 7 | 3impb | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ∧ 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) → 𝑦 ∈ 𝑥 ) |
| 9 | 8 | rabssdv | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) → { 𝑦 ∈ On ∣ 𝑦 ≼ 𝐴 } ⊆ 𝑥 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ) → { 𝑦 ∈ On ∣ 𝑦 ≼ 𝐴 } ⊆ 𝑥 ) |
| 11 | 2 10 | eqsstrd | ⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝑥 ∈ On ∧ 𝐴 ≺ 𝑥 ) ) → ( har ‘ 𝐴 ) ⊆ 𝑥 ) |
| 12 | 11 | expr | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝑥 ∈ On ) → ( 𝐴 ≺ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 13 | 12 | ralrimiva | ⊢ ( 𝐴 ∈ dom card → ∀ 𝑥 ∈ On ( 𝐴 ≺ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 14 | ssintrab | ⊢ ( ( har ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ↔ ∀ 𝑥 ∈ On ( 𝐴 ≺ 𝑥 → ( har ‘ 𝐴 ) ⊆ 𝑥 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 16 | breq2 | ⊢ ( 𝑥 = ( har ‘ 𝐴 ) → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ( har ‘ 𝐴 ) ) ) | |
| 17 | harcl | ⊢ ( har ‘ 𝐴 ) ∈ On | |
| 18 | 17 | a1i | ⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ∈ On ) |
| 19 | harsdom | ⊢ ( 𝐴 ∈ dom card → 𝐴 ≺ ( har ‘ 𝐴 ) ) | |
| 20 | 16 18 19 | elrabd | ⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 21 | intss1 | ⊢ ( ( har ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ⊆ ( har ‘ 𝐴 ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝐴 ∈ dom card → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ⊆ ( har ‘ 𝐴 ) ) |
| 23 | 15 22 | eqssd | ⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |