This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harsucnn | ⊢ ( 𝐴 ∈ ω → ( har ‘ 𝐴 ) = suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 2 | onenon | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ dom card ) | |
| 3 | harval2 | ⊢ ( 𝐴 ∈ dom card → ( har ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐴 ∈ ω → ( har ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 5 | sucdom | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≺ 𝑥 ↔ suc 𝐴 ≼ 𝑥 ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ On ) → ( 𝐴 ≺ 𝑥 ↔ suc 𝐴 ≼ 𝑥 ) ) |
| 7 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 8 | nndomog | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝑥 ∈ On ) → ( suc 𝐴 ≼ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ On ) → ( suc 𝐴 ≼ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) |
| 10 | 6 9 | bitrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ On ) → ( 𝐴 ≺ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) |
| 11 | 10 | rabbidva | ⊢ ( 𝐴 ∈ ω → { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } ) |
| 12 | 11 | inteqd | ⊢ ( 𝐴 ∈ ω → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } ) |
| 13 | nnon | ⊢ ( suc 𝐴 ∈ ω → suc 𝐴 ∈ On ) | |
| 14 | intmin | ⊢ ( suc 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } = suc 𝐴 ) | |
| 15 | 7 13 14 | 3syl | ⊢ ( 𝐴 ∈ ω → ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } = suc 𝐴 ) |
| 16 | 4 12 15 | 3eqtrd | ⊢ ( 𝐴 ∈ ω → ( har ‘ 𝐴 ) = suc 𝐴 ) |