This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harsucnn | |- ( A e. _om -> ( har ` A ) = suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | |- ( A e. _om -> A e. On ) |
|
| 2 | onenon | |- ( A e. On -> A e. dom card ) |
|
| 3 | harval2 | |- ( A e. dom card -> ( har ` A ) = |^| { x e. On | A ~< x } ) |
|
| 4 | 1 2 3 | 3syl | |- ( A e. _om -> ( har ` A ) = |^| { x e. On | A ~< x } ) |
| 5 | sucdom | |- ( A e. _om -> ( A ~< x <-> suc A ~<_ x ) ) |
|
| 6 | 5 | adantr | |- ( ( A e. _om /\ x e. On ) -> ( A ~< x <-> suc A ~<_ x ) ) |
| 7 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 8 | nndomog | |- ( ( suc A e. _om /\ x e. On ) -> ( suc A ~<_ x <-> suc A C_ x ) ) |
|
| 9 | 7 8 | sylan | |- ( ( A e. _om /\ x e. On ) -> ( suc A ~<_ x <-> suc A C_ x ) ) |
| 10 | 6 9 | bitrd | |- ( ( A e. _om /\ x e. On ) -> ( A ~< x <-> suc A C_ x ) ) |
| 11 | 10 | rabbidva | |- ( A e. _om -> { x e. On | A ~< x } = { x e. On | suc A C_ x } ) |
| 12 | 11 | inteqd | |- ( A e. _om -> |^| { x e. On | A ~< x } = |^| { x e. On | suc A C_ x } ) |
| 13 | nnon | |- ( suc A e. _om -> suc A e. On ) |
|
| 14 | intmin | |- ( suc A e. On -> |^| { x e. On | suc A C_ x } = suc A ) |
|
| 15 | 7 13 14 | 3syl | |- ( A e. _om -> |^| { x e. On | suc A C_ x } = suc A ) |
| 16 | 4 12 15 | 3eqtrd | |- ( A e. _om -> ( har ` A ) = suc A ) |