This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | h1deot.1 | ⊢ 𝐵 ∈ ℋ | |
| Assertion | h1deoi | ⊢ ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1deot.1 | ⊢ 𝐵 ∈ ℋ | |
| 2 | snssi | ⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) | |
| 3 | ocel | ⊢ ( { 𝐵 } ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 5 | 1 | elexi | ⊢ 𝐵 ∈ V |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·ih 𝑥 ) = ( 𝐴 ·ih 𝐵 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| 8 | 5 7 | ralsn | ⊢ ( ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) |
| 9 | 8 | anbi2i | ⊢ ( ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| 10 | 4 9 | bitri | ⊢ ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |