This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | h1deot.1 | |- B e. ~H |
|
| Assertion | h1deoi | |- ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1deot.1 | |- B e. ~H |
|
| 2 | snssi | |- ( B e. ~H -> { B } C_ ~H ) |
|
| 3 | ocel | |- ( { B } C_ ~H -> ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) ) ) |
|
| 4 | 1 2 3 | mp2b | |- ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) ) |
| 5 | 1 | elexi | |- B e. _V |
| 6 | oveq2 | |- ( x = B -> ( A .ih x ) = ( A .ih B ) ) |
|
| 7 | 6 | eqeq1d | |- ( x = B -> ( ( A .ih x ) = 0 <-> ( A .ih B ) = 0 ) ) |
| 8 | 5 7 | ralsn | |- ( A. x e. { B } ( A .ih x ) = 0 <-> ( A .ih B ) = 0 ) |
| 9 | 8 | anbi2i | |- ( ( A e. ~H /\ A. x e. { B } ( A .ih x ) = 0 ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) ) |
| 10 | 4 9 | bitri | |- ( A e. ( _|_ ` { B } ) <-> ( A e. ~H /\ ( A .ih B ) = 0 ) ) |