This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | h1deot.1 | |- B e. ~H |
|
| Assertion | h1dei | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1deot.1 | |- B e. ~H |
|
| 2 | snssi | |- ( B e. ~H -> { B } C_ ~H ) |
|
| 3 | occl | |- ( { B } C_ ~H -> ( _|_ ` { B } ) e. CH ) |
|
| 4 | 1 2 3 | mp2b | |- ( _|_ ` { B } ) e. CH |
| 5 | 4 | chssii | |- ( _|_ ` { B } ) C_ ~H |
| 6 | ocel | |- ( ( _|_ ` { B } ) C_ ~H -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ( _|_ ` { B } ) ( A .ih x ) = 0 ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ( _|_ ` { B } ) ( A .ih x ) = 0 ) ) |
| 8 | 1 | h1deoi | |- ( x e. ( _|_ ` { B } ) <-> ( x e. ~H /\ ( x .ih B ) = 0 ) ) |
| 9 | orthcom | |- ( ( x e. ~H /\ B e. ~H ) -> ( ( x .ih B ) = 0 <-> ( B .ih x ) = 0 ) ) |
|
| 10 | 1 9 | mpan2 | |- ( x e. ~H -> ( ( x .ih B ) = 0 <-> ( B .ih x ) = 0 ) ) |
| 11 | 10 | pm5.32i | |- ( ( x e. ~H /\ ( x .ih B ) = 0 ) <-> ( x e. ~H /\ ( B .ih x ) = 0 ) ) |
| 12 | 8 11 | bitri | |- ( x e. ( _|_ ` { B } ) <-> ( x e. ~H /\ ( B .ih x ) = 0 ) ) |
| 13 | 12 | imbi1i | |- ( ( x e. ( _|_ ` { B } ) -> ( A .ih x ) = 0 ) <-> ( ( x e. ~H /\ ( B .ih x ) = 0 ) -> ( A .ih x ) = 0 ) ) |
| 14 | impexp | |- ( ( ( x e. ~H /\ ( B .ih x ) = 0 ) -> ( A .ih x ) = 0 ) <-> ( x e. ~H -> ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |
|
| 15 | 13 14 | bitri | |- ( ( x e. ( _|_ ` { B } ) -> ( A .ih x ) = 0 ) <-> ( x e. ~H -> ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |
| 16 | 15 | ralbii2 | |- ( A. x e. ( _|_ ` { B } ) ( A .ih x ) = 0 <-> A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) |
| 17 | 16 | anbi2i | |- ( ( A e. ~H /\ A. x e. ( _|_ ` { B } ) ( A .ih x ) = 0 ) <-> ( A e. ~H /\ A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |
| 18 | 7 17 | bitri | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |