This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 , since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by Mario Carneiro, 5-May-2015) (Revised by AV, 10-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumvsmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| gsumvsmul.s | ⊢ 𝑆 = ( Scalar ‘ 𝑅 ) | ||
| gsumvsmul.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| gsumvsmul.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| gsumvsmul.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| gsumvsmul.t | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | ||
| gsumvsmul.r | ⊢ ( 𝜑 → 𝑅 ∈ LMod ) | ||
| gsumvsmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumvsmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| gsumvsmul.y | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) | ||
| gsumvsmul.n | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) finSupp 0 ) | ||
| Assertion | gsumvsmul | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvsmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | gsumvsmul.s | ⊢ 𝑆 = ( Scalar ‘ 𝑅 ) | |
| 3 | gsumvsmul.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 4 | gsumvsmul.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | gsumvsmul.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 6 | gsumvsmul.t | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | |
| 7 | gsumvsmul.r | ⊢ ( 𝜑 → 𝑅 ∈ LMod ) | |
| 8 | gsumvsmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 9 | gsumvsmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 10 | gsumvsmul.y | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) | |
| 11 | gsumvsmul.n | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) finSupp 0 ) | |
| 12 | lmodcmn | ⊢ ( 𝑅 ∈ LMod → 𝑅 ∈ CMnd ) | |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 14 | cmnmnd | ⊢ ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 16 | 1 2 6 3 | lmodvsghm | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 17 | 7 9 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 18 | ghmmhm | ⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| 20 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) | |
| 21 | oveq2 | ⊢ ( 𝑦 = ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) → ( 𝑋 · 𝑦 ) = ( 𝑋 · ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) ) ) | |
| 22 | 1 4 13 15 8 19 10 11 20 21 | gsummhm2 | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) ) ) |