This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 , since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by Mario Carneiro, 5-May-2015) (Revised by AV, 10-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumvsmul.b | |- B = ( Base ` R ) |
|
| gsumvsmul.s | |- S = ( Scalar ` R ) |
||
| gsumvsmul.k | |- K = ( Base ` S ) |
||
| gsumvsmul.z | |- .0. = ( 0g ` R ) |
||
| gsumvsmul.p | |- .+ = ( +g ` R ) |
||
| gsumvsmul.t | |- .x. = ( .s ` R ) |
||
| gsumvsmul.r | |- ( ph -> R e. LMod ) |
||
| gsumvsmul.a | |- ( ph -> A e. V ) |
||
| gsumvsmul.x | |- ( ph -> X e. K ) |
||
| gsumvsmul.y | |- ( ( ph /\ k e. A ) -> Y e. B ) |
||
| gsumvsmul.n | |- ( ph -> ( k e. A |-> Y ) finSupp .0. ) |
||
| Assertion | gsumvsmul | |- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( X .x. ( R gsum ( k e. A |-> Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvsmul.b | |- B = ( Base ` R ) |
|
| 2 | gsumvsmul.s | |- S = ( Scalar ` R ) |
|
| 3 | gsumvsmul.k | |- K = ( Base ` S ) |
|
| 4 | gsumvsmul.z | |- .0. = ( 0g ` R ) |
|
| 5 | gsumvsmul.p | |- .+ = ( +g ` R ) |
|
| 6 | gsumvsmul.t | |- .x. = ( .s ` R ) |
|
| 7 | gsumvsmul.r | |- ( ph -> R e. LMod ) |
|
| 8 | gsumvsmul.a | |- ( ph -> A e. V ) |
|
| 9 | gsumvsmul.x | |- ( ph -> X e. K ) |
|
| 10 | gsumvsmul.y | |- ( ( ph /\ k e. A ) -> Y e. B ) |
|
| 11 | gsumvsmul.n | |- ( ph -> ( k e. A |-> Y ) finSupp .0. ) |
|
| 12 | lmodcmn | |- ( R e. LMod -> R e. CMnd ) |
|
| 13 | 7 12 | syl | |- ( ph -> R e. CMnd ) |
| 14 | cmnmnd | |- ( R e. CMnd -> R e. Mnd ) |
|
| 15 | 13 14 | syl | |- ( ph -> R e. Mnd ) |
| 16 | 1 2 6 3 | lmodvsghm | |- ( ( R e. LMod /\ X e. K ) -> ( y e. B |-> ( X .x. y ) ) e. ( R GrpHom R ) ) |
| 17 | 7 9 16 | syl2anc | |- ( ph -> ( y e. B |-> ( X .x. y ) ) e. ( R GrpHom R ) ) |
| 18 | ghmmhm | |- ( ( y e. B |-> ( X .x. y ) ) e. ( R GrpHom R ) -> ( y e. B |-> ( X .x. y ) ) e. ( R MndHom R ) ) |
|
| 19 | 17 18 | syl | |- ( ph -> ( y e. B |-> ( X .x. y ) ) e. ( R MndHom R ) ) |
| 20 | oveq2 | |- ( y = Y -> ( X .x. y ) = ( X .x. Y ) ) |
|
| 21 | oveq2 | |- ( y = ( R gsum ( k e. A |-> Y ) ) -> ( X .x. y ) = ( X .x. ( R gsum ( k e. A |-> Y ) ) ) ) |
|
| 22 | 1 4 13 15 8 19 10 11 20 21 | gsummhm2 | |- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( X .x. ( R gsum ( k e. A |-> Y ) ) ) ) |