This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptscmfsupp0.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| mptscmfsupp0.q | ⊢ ( 𝜑 → 𝑄 ∈ LMod ) | ||
| mptscmfsupp0.r | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑄 ) ) | ||
| mptscmfsupp0.k | ⊢ 𝐾 = ( Base ‘ 𝑄 ) | ||
| mptscmfsupp0.s | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑆 ∈ 𝐵 ) | ||
| mptscmfsupp0.w | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑊 ∈ 𝐾 ) | ||
| mptscmfsupp0.0 | ⊢ 0 = ( 0g ‘ 𝑄 ) | ||
| mptscmfsupp0.z | ⊢ 𝑍 = ( 0g ‘ 𝑅 ) | ||
| mptscmfsupp0.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) | ||
| mptscmfsupp0.f | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) finSupp 𝑍 ) | ||
| Assertion | mptscmfsupp0 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptscmfsupp0.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 2 | mptscmfsupp0.q | ⊢ ( 𝜑 → 𝑄 ∈ LMod ) | |
| 3 | mptscmfsupp0.r | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑄 ) ) | |
| 4 | mptscmfsupp0.k | ⊢ 𝐾 = ( Base ‘ 𝑄 ) | |
| 5 | mptscmfsupp0.s | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑆 ∈ 𝐵 ) | |
| 6 | mptscmfsupp0.w | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑊 ∈ 𝐾 ) | |
| 7 | mptscmfsupp0.0 | ⊢ 0 = ( 0g ‘ 𝑄 ) | |
| 8 | mptscmfsupp0.z | ⊢ 𝑍 = ( 0g ‘ 𝑅 ) | |
| 9 | mptscmfsupp0.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) | |
| 10 | mptscmfsupp0.f | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) finSupp 𝑍 ) | |
| 11 | 1 | mptexd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ∈ V ) |
| 12 | funmpt | ⊢ Fun ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → Fun ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ) |
| 14 | 7 | fvexi | ⊢ 0 ∈ V |
| 15 | 14 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 16 | 10 | fsuppimpd | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) ∈ Fin ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ 𝐷 ) | |
| 18 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐷 𝑆 ∈ 𝐵 ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ∀ 𝑘 ∈ 𝐷 𝑆 ∈ 𝐵 ) |
| 20 | rspcsbela | ⊢ ( ( 𝑑 ∈ 𝐷 ∧ ∀ 𝑘 ∈ 𝐷 𝑆 ∈ 𝐵 ) → ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∈ 𝐵 ) | |
| 21 | 17 19 20 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∈ 𝐵 ) |
| 22 | eqid | ⊢ ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) = ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) | |
| 23 | 22 | fvmpts | ⊢ ( ( 𝑑 ∈ 𝐷 ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) = ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ) |
| 24 | 17 21 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) = ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ) |
| 25 | 24 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) = 𝑍 ↔ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 ) ) |
| 26 | oveq1 | ⊢ ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 → ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = ( 𝑍 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) | |
| 27 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑅 = ( Scalar ‘ 𝑄 ) ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 29 | 8 28 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑍 = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 𝑍 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) |
| 31 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑄 ∈ LMod ) |
| 32 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐷 𝑊 ∈ 𝐾 ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ∀ 𝑘 ∈ 𝐷 𝑊 ∈ 𝐾 ) |
| 34 | rspcsbela | ⊢ ( ( 𝑑 ∈ 𝐷 ∧ ∀ 𝑘 ∈ 𝐷 𝑊 ∈ 𝐾 ) → ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ∈ 𝐾 ) | |
| 35 | 17 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ∈ 𝐾 ) |
| 36 | eqid | ⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) | |
| 37 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) | |
| 38 | 4 36 9 37 7 | lmod0vs | ⊢ ( ( 𝑄 ∈ LMod ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ∈ 𝐾 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) |
| 39 | 31 35 38 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) |
| 40 | 30 39 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 𝑍 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) |
| 41 | 26 40 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 ) → ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) |
| 42 | csbov12g | ⊢ ( 𝑑 ∈ 𝐷 → ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) = ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) = ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) |
| 44 | ovex | ⊢ ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ∈ V | |
| 45 | 43 44 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) ∈ V ) |
| 46 | eqid | ⊢ ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) | |
| 47 | 46 | fvmpts | ⊢ ( ( 𝑑 ∈ 𝐷 ∧ ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) ∈ V ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) ) |
| 48 | 17 45 47 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) ) |
| 49 | 48 43 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) |
| 50 | 49 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ↔ ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ↔ ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) ) |
| 52 | 41 51 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ) |
| 53 | 52 | ex | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ) ) |
| 54 | 25 53 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) = 𝑍 → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ) ) |
| 55 | 54 | necon3d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) ≠ 0 → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) ≠ 𝑍 ) ) |
| 56 | 55 | ss2rabdv | ⊢ ( 𝜑 → { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } ⊆ { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } ) |
| 57 | ovex | ⊢ ( 𝑆 ∗ 𝑊 ) ∈ V | |
| 58 | 57 | rgenw | ⊢ ∀ 𝑘 ∈ 𝐷 ( 𝑆 ∗ 𝑊 ) ∈ V |
| 59 | 46 | fnmpt | ⊢ ( ∀ 𝑘 ∈ 𝐷 ( 𝑆 ∗ 𝑊 ) ∈ V → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) Fn 𝐷 ) |
| 60 | 58 59 | mp1i | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) Fn 𝐷 ) |
| 61 | suppvalfn | ⊢ ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) Fn 𝐷 ∧ 𝐷 ∈ 𝑉 ∧ 0 ∈ V ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) supp 0 ) = { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } ) | |
| 62 | 60 1 15 61 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) supp 0 ) = { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } ) |
| 63 | 22 | fnmpt | ⊢ ( ∀ 𝑘 ∈ 𝐷 𝑆 ∈ 𝐵 → ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) Fn 𝐷 ) |
| 64 | 18 63 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) Fn 𝐷 ) |
| 65 | 8 | fvexi | ⊢ 𝑍 ∈ V |
| 66 | 65 | a1i | ⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 67 | suppvalfn | ⊢ ( ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) Fn 𝐷 ∧ 𝐷 ∈ 𝑉 ∧ 𝑍 ∈ V ) → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) = { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } ) | |
| 68 | 64 1 66 67 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) = { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } ) |
| 69 | 56 62 68 | 3sstr4d | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) supp 0 ) ⊆ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) ) |
| 70 | suppssfifsupp | ⊢ ( ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ∧ 0 ∈ V ) ∧ ( ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) ∈ Fin ∧ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) supp 0 ) ⊆ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) finSupp 0 ) | |
| 71 | 11 13 15 16 69 70 | syl32anc | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) finSupp 0 ) |