This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 , since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by Mario Carneiro, 5-May-2015) (Revised by AV, 10-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumvsmul.b | ||
| gsumvsmul.s | |||
| gsumvsmul.k | |||
| gsumvsmul.z | |||
| gsumvsmul.p | |||
| gsumvsmul.t | |||
| gsumvsmul.r | |||
| gsumvsmul.a | |||
| gsumvsmul.x | |||
| gsumvsmul.y | |||
| gsumvsmul.n | |||
| Assertion | gsumvsmul |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvsmul.b | ||
| 2 | gsumvsmul.s | ||
| 3 | gsumvsmul.k | ||
| 4 | gsumvsmul.z | ||
| 5 | gsumvsmul.p | ||
| 6 | gsumvsmul.t | ||
| 7 | gsumvsmul.r | ||
| 8 | gsumvsmul.a | ||
| 9 | gsumvsmul.x | ||
| 10 | gsumvsmul.y | ||
| 11 | gsumvsmul.n | ||
| 12 | lmodcmn | ||
| 13 | 7 12 | syl | |
| 14 | cmnmnd | ||
| 15 | 13 14 | syl | |
| 16 | 1 2 6 3 | lmodvsghm | |
| 17 | 7 9 16 | syl2anc | |
| 18 | ghmmhm | ||
| 19 | 17 18 | syl | |
| 20 | oveq2 | ||
| 21 | oveq2 | ||
| 22 | 1 4 13 15 8 19 10 11 20 21 | gsummhm2 |