This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumsnfd
Metamath Proof Explorer
Description: Group sum of a singleton, deduction form, using bound-variable
hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro , 19-Dec-2014) (Revised by Thierry Arnoux , 28-Mar-2018) (Revised by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsumsnd.b
⊢ B = Base G
gsumsnd.g
⊢ φ → G ∈ Mnd
gsumsnd.m
⊢ φ → M ∈ V
gsumsnd.c
⊢ φ → C ∈ B
gsumsnd.s
⊢ φ ∧ k = M → A = C
gsumsnfd.p
⊢ Ⅎ k φ
gsumsnfd.c
⊢ Ⅎ _ k C
Assertion
gsumsnfd
⊢ φ → ∑ G k ∈ M A = C
Proof
Step
Hyp
Ref
Expression
1
gsumsnd.b
⊢ B = Base G
2
gsumsnd.g
⊢ φ → G ∈ Mnd
3
gsumsnd.m
⊢ φ → M ∈ V
4
gsumsnd.c
⊢ φ → C ∈ B
5
gsumsnd.s
⊢ φ ∧ k = M → A = C
6
gsumsnfd.p
⊢ Ⅎ k φ
7
gsumsnfd.c
⊢ Ⅎ _ k C
8
elsni
⊢ k ∈ M → k = M
9
8 5
sylan2
⊢ φ ∧ k ∈ M → A = C
10
6 9
mpteq2da
⊢ φ → k ∈ M ⟼ A = k ∈ M ⟼ C
11
10
oveq2d
⊢ φ → ∑ G k ∈ M A = ∑ G k ∈ M C
12
snfi
⊢ M ∈ Fin
13
12
a1i
⊢ φ → M ∈ Fin
14
eqid
⊢ ⋅ G = ⋅ G
15
7 1 14
gsumconstf
⊢ G ∈ Mnd ∧ M ∈ Fin ∧ C ∈ B → ∑ G k ∈ M C = M ⋅ G C
16
2 13 4 15
syl3anc
⊢ φ → ∑ G k ∈ M C = M ⋅ G C
17
11 16
eqtrd
⊢ φ → ∑ G k ∈ M A = M ⋅ G C
18
hashsng
⊢ M ∈ V → M = 1
19
3 18
syl
⊢ φ → M = 1
20
19
oveq1d
⊢ φ → M ⋅ G C = 1 ⋅ G C
21
1 14
mulg1
⊢ C ∈ B → 1 ⋅ G C = C
22
4 21
syl
⊢ φ → 1 ⋅ G C = C
23
17 20 22
3eqtrd
⊢ φ → ∑ G k ∈ M A = C