This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Revised by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsnd.b | |- B = ( Base ` G ) |
|
| gsumsnd.g | |- ( ph -> G e. Mnd ) |
||
| gsumsnd.m | |- ( ph -> M e. V ) |
||
| gsumsnd.c | |- ( ph -> C e. B ) |
||
| gsumsnd.s | |- ( ( ph /\ k = M ) -> A = C ) |
||
| gsumsnfd.p | |- F/ k ph |
||
| gsumsnfd.c | |- F/_ k C |
||
| Assertion | gsumsnfd | |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnd.b | |- B = ( Base ` G ) |
|
| 2 | gsumsnd.g | |- ( ph -> G e. Mnd ) |
|
| 3 | gsumsnd.m | |- ( ph -> M e. V ) |
|
| 4 | gsumsnd.c | |- ( ph -> C e. B ) |
|
| 5 | gsumsnd.s | |- ( ( ph /\ k = M ) -> A = C ) |
|
| 6 | gsumsnfd.p | |- F/ k ph |
|
| 7 | gsumsnfd.c | |- F/_ k C |
|
| 8 | elsni | |- ( k e. { M } -> k = M ) |
|
| 9 | 8 5 | sylan2 | |- ( ( ph /\ k e. { M } ) -> A = C ) |
| 10 | 6 9 | mpteq2da | |- ( ph -> ( k e. { M } |-> A ) = ( k e. { M } |-> C ) ) |
| 11 | 10 | oveq2d | |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = ( G gsum ( k e. { M } |-> C ) ) ) |
| 12 | snfi | |- { M } e. Fin |
|
| 13 | 12 | a1i | |- ( ph -> { M } e. Fin ) |
| 14 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 15 | 7 1 14 | gsumconstf | |- ( ( G e. Mnd /\ { M } e. Fin /\ C e. B ) -> ( G gsum ( k e. { M } |-> C ) ) = ( ( # ` { M } ) ( .g ` G ) C ) ) |
| 16 | 2 13 4 15 | syl3anc | |- ( ph -> ( G gsum ( k e. { M } |-> C ) ) = ( ( # ` { M } ) ( .g ` G ) C ) ) |
| 17 | 11 16 | eqtrd | |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = ( ( # ` { M } ) ( .g ` G ) C ) ) |
| 18 | hashsng | |- ( M e. V -> ( # ` { M } ) = 1 ) |
|
| 19 | 3 18 | syl | |- ( ph -> ( # ` { M } ) = 1 ) |
| 20 | 19 | oveq1d | |- ( ph -> ( ( # ` { M } ) ( .g ` G ) C ) = ( 1 ( .g ` G ) C ) ) |
| 21 | 1 14 | mulg1 | |- ( C e. B -> ( 1 ( .g ` G ) C ) = C ) |
| 22 | 4 21 | syl | |- ( ph -> ( 1 ( .g ` G ) C ) = C ) |
| 23 | 17 20 22 | 3eqtrd | |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C ) |