This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsummulg and gsummulgz . (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummulg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummulg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| gsummulg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsummulg.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsummulg.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | ||
| gsummulglem.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummulglem.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| gsummulglem.o | ⊢ ( 𝜑 → ( 𝐺 ∈ Abel ∨ 𝑁 ∈ ℕ0 ) ) | ||
| Assertion | gsummulglem | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummulg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummulg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | gsummulg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsummulg.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | gsummulg.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | |
| 7 | gsummulglem.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 8 | gsummulglem.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 9 | gsummulglem.o | ⊢ ( 𝜑 → ( 𝐺 ∈ Abel ∨ 𝑁 ∈ ℕ0 ) ) | |
| 10 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 11 | 7 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 12 | 1 3 | mulgghm | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 13 | ghmmhm | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 15 | 14 | expcom | ⊢ ( 𝑁 ∈ ℤ → ( 𝐺 ∈ Abel → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) ) |
| 16 | 8 15 | syl | ⊢ ( 𝜑 → ( 𝐺 ∈ Abel → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) ) |
| 17 | 1 3 | mulgmhm | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 18 | 17 | ex | ⊢ ( 𝐺 ∈ CMnd → ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) ) |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) ) |
| 20 | 16 19 9 | mpjaod | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 21 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑁 · 𝑥 ) = ( 𝑁 · 𝑋 ) ) | |
| 22 | oveq2 | ⊢ ( 𝑥 = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → ( 𝑁 · 𝑥 ) = ( 𝑁 · ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) | |
| 23 | 1 2 7 11 4 20 5 6 21 22 | gsummhm2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |