This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsummulg and gsummulgz . (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulg.b | ||
| gsummulg.z | |||
| gsummulg.t | |||
| gsummulg.a | |||
| gsummulg.f | |||
| gsummulg.w | |||
| gsummulglem.g | |||
| gsummulglem.n | |||
| gsummulglem.o | |||
| Assertion | gsummulglem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulg.b | ||
| 2 | gsummulg.z | ||
| 3 | gsummulg.t | ||
| 4 | gsummulg.a | ||
| 5 | gsummulg.f | ||
| 6 | gsummulg.w | ||
| 7 | gsummulglem.g | ||
| 8 | gsummulglem.n | ||
| 9 | gsummulglem.o | ||
| 10 | cmnmnd | ||
| 11 | 7 10 | syl | |
| 12 | 1 3 | mulgghm | |
| 13 | ghmmhm | ||
| 14 | 12 13 | syl | |
| 15 | 14 | expcom | |
| 16 | 8 15 | syl | |
| 17 | 1 3 | mulgmhm | |
| 18 | 17 | ex | |
| 19 | 7 18 | syl | |
| 20 | 16 19 9 | mpjaod | |
| 21 | oveq2 | ||
| 22 | oveq2 | ||
| 23 | 1 2 7 11 4 20 5 6 21 22 | gsummhm2 |