This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative multiple of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 7-Jan-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummulg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummulg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| gsummulg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsummulg.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsummulg.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | ||
| gsummulg.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummulg.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | gsummulg | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummulg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummulg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | gsummulg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsummulg.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | gsummulg.w | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | |
| 7 | gsummulg.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 8 | gsummulg.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 9 | 8 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 10 | 8 | olcd | ⊢ ( 𝜑 → ( 𝐺 ∈ Abel ∨ 𝑁 ∈ ℕ0 ) ) |
| 11 | 1 2 3 4 5 6 7 9 10 | gsummulglem | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |