This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsummulg and gsummulgz . (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulg.b | |- B = ( Base ` G ) |
|
| gsummulg.z | |- .0. = ( 0g ` G ) |
||
| gsummulg.t | |- .x. = ( .g ` G ) |
||
| gsummulg.a | |- ( ph -> A e. V ) |
||
| gsummulg.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsummulg.w | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
||
| gsummulglem.g | |- ( ph -> G e. CMnd ) |
||
| gsummulglem.n | |- ( ph -> N e. ZZ ) |
||
| gsummulglem.o | |- ( ph -> ( G e. Abel \/ N e. NN0 ) ) |
||
| Assertion | gsummulglem | |- ( ph -> ( G gsum ( k e. A |-> ( N .x. X ) ) ) = ( N .x. ( G gsum ( k e. A |-> X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulg.b | |- B = ( Base ` G ) |
|
| 2 | gsummulg.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsummulg.t | |- .x. = ( .g ` G ) |
|
| 4 | gsummulg.a | |- ( ph -> A e. V ) |
|
| 5 | gsummulg.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 6 | gsummulg.w | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
|
| 7 | gsummulglem.g | |- ( ph -> G e. CMnd ) |
|
| 8 | gsummulglem.n | |- ( ph -> N e. ZZ ) |
|
| 9 | gsummulglem.o | |- ( ph -> ( G e. Abel \/ N e. NN0 ) ) |
|
| 10 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 11 | 7 10 | syl | |- ( ph -> G e. Mnd ) |
| 12 | 1 3 | mulgghm | |- ( ( G e. Abel /\ N e. ZZ ) -> ( x e. B |-> ( N .x. x ) ) e. ( G GrpHom G ) ) |
| 13 | ghmmhm | |- ( ( x e. B |-> ( N .x. x ) ) e. ( G GrpHom G ) -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) |
|
| 14 | 12 13 | syl | |- ( ( G e. Abel /\ N e. ZZ ) -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) |
| 15 | 14 | expcom | |- ( N e. ZZ -> ( G e. Abel -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) ) |
| 16 | 8 15 | syl | |- ( ph -> ( G e. Abel -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) ) |
| 17 | 1 3 | mulgmhm | |- ( ( G e. CMnd /\ N e. NN0 ) -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) |
| 18 | 17 | ex | |- ( G e. CMnd -> ( N e. NN0 -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) ) |
| 19 | 7 18 | syl | |- ( ph -> ( N e. NN0 -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) ) |
| 20 | 16 19 9 | mpjaod | |- ( ph -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) |
| 21 | oveq2 | |- ( x = X -> ( N .x. x ) = ( N .x. X ) ) |
|
| 22 | oveq2 | |- ( x = ( G gsum ( k e. A |-> X ) ) -> ( N .x. x ) = ( N .x. ( G gsum ( k e. A |-> X ) ) ) ) |
|
| 23 | 1 2 7 11 4 20 5 6 21 22 | gsummhm2 | |- ( ph -> ( G gsum ( k e. A |-> ( N .x. X ) ) ) = ( N .x. ( G gsum ( k e. A |-> X ) ) ) ) |