This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmsymgrfix.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| gsmsymgrfix.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| gsmsymgreq.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) | ||
| gsmsymgreq.p | ⊢ 𝑃 = ( Base ‘ 𝑍 ) | ||
| gsmsymgreq.i | ⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) | ||
| Assertion | fvcosymgeq | ⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐻 ∘ 𝐾 ) ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmsymgrfix.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| 2 | gsmsymgrfix.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | gsmsymgreq.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) | |
| 4 | gsmsymgreq.p | ⊢ 𝑃 = ( Base ‘ 𝑍 ) | |
| 5 | gsmsymgreq.i | ⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) | |
| 6 | 1 2 | symgbasf | ⊢ ( 𝐺 ∈ 𝐵 → 𝐺 : 𝑁 ⟶ 𝑁 ) |
| 7 | 6 | ffnd | ⊢ ( 𝐺 ∈ 𝐵 → 𝐺 Fn 𝑁 ) |
| 8 | 3 4 | symgbasf | ⊢ ( 𝐾 ∈ 𝑃 → 𝐾 : 𝑀 ⟶ 𝑀 ) |
| 9 | 8 | ffnd | ⊢ ( 𝐾 ∈ 𝑃 → 𝐾 Fn 𝑀 ) |
| 10 | 7 9 | anim12i | ⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( 𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀 ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ( 𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀 ) ) |
| 12 | 5 | eleq2i | ⊢ ( 𝑋 ∈ 𝐼 ↔ 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ) |
| 13 | 12 | biimpi | ⊢ ( 𝑋 ∈ 𝐼 → 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ) |
| 16 | simpr2 | ⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ) | |
| 17 | 1 2 | symgbasf1o | ⊢ ( 𝐺 ∈ 𝐵 → 𝐺 : 𝑁 –1-1-onto→ 𝑁 ) |
| 18 | dff1o5 | ⊢ ( 𝐺 : 𝑁 –1-1-onto→ 𝑁 ↔ ( 𝐺 : 𝑁 –1-1→ 𝑁 ∧ ran 𝐺 = 𝑁 ) ) | |
| 19 | eqcom | ⊢ ( ran 𝐺 = 𝑁 ↔ 𝑁 = ran 𝐺 ) | |
| 20 | 19 | biimpi | ⊢ ( ran 𝐺 = 𝑁 → 𝑁 = ran 𝐺 ) |
| 21 | 18 20 | simplbiim | ⊢ ( 𝐺 : 𝑁 –1-1-onto→ 𝑁 → 𝑁 = ran 𝐺 ) |
| 22 | 17 21 | syl | ⊢ ( 𝐺 ∈ 𝐵 → 𝑁 = ran 𝐺 ) |
| 23 | 3 4 | symgbasf1o | ⊢ ( 𝐾 ∈ 𝑃 → 𝐾 : 𝑀 –1-1-onto→ 𝑀 ) |
| 24 | dff1o5 | ⊢ ( 𝐾 : 𝑀 –1-1-onto→ 𝑀 ↔ ( 𝐾 : 𝑀 –1-1→ 𝑀 ∧ ran 𝐾 = 𝑀 ) ) | |
| 25 | eqcom | ⊢ ( ran 𝐾 = 𝑀 ↔ 𝑀 = ran 𝐾 ) | |
| 26 | 25 | biimpi | ⊢ ( ran 𝐾 = 𝑀 → 𝑀 = ran 𝐾 ) |
| 27 | 24 26 | simplbiim | ⊢ ( 𝐾 : 𝑀 –1-1-onto→ 𝑀 → 𝑀 = ran 𝐾 ) |
| 28 | 23 27 | syl | ⊢ ( 𝐾 ∈ 𝑃 → 𝑀 = ran 𝐾 ) |
| 29 | 22 28 | ineqan12d | ⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( 𝑁 ∩ 𝑀 ) = ( ran 𝐺 ∩ ran 𝐾 ) ) |
| 30 | 5 29 | eqtrid | ⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → 𝐼 = ( ran 𝐺 ∩ ran 𝐾 ) ) |
| 31 | 30 | raleqdv | ⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) |
| 32 | 31 | biimpcd | ⊢ ( ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) → ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) |
| 34 | 33 | impcom | ⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) |
| 35 | 15 16 34 | 3jca | ⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ( 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) |
| 36 | fvcofneq | ⊢ ( ( 𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀 ) → ( ( 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐻 ∘ 𝐾 ) ‘ 𝑋 ) ) ) | |
| 37 | 11 35 36 | sylc | ⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐻 ∘ 𝐾 ) ‘ 𝑋 ) ) |
| 38 | 37 | ex | ⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐻 ∘ 𝐾 ) ‘ 𝑋 ) ) ) |