This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of a set fixing an element of the set. (Contributed by AV, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | ||
| Assertion | symgfixelq | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝑄 ↔ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | |
| 3 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝐾 ) = ( 𝐹 ‘ 𝐾 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝐾 ) = 𝐾 ↔ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) |
| 5 | fveq1 | ⊢ ( 𝑞 = 𝑓 → ( 𝑞 ‘ 𝐾 ) = ( 𝑓 ‘ 𝐾 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑞 = 𝑓 → ( ( 𝑞 ‘ 𝐾 ) = 𝐾 ↔ ( 𝑓 ‘ 𝐾 ) = 𝐾 ) ) |
| 7 | 6 | cbvrabv | ⊢ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } = { 𝑓 ∈ 𝑃 ∣ ( 𝑓 ‘ 𝐾 ) = 𝐾 } |
| 8 | 2 7 | eqtri | ⊢ 𝑄 = { 𝑓 ∈ 𝑃 ∣ ( 𝑓 ‘ 𝐾 ) = 𝐾 } |
| 9 | 4 8 | elrab2 | ⊢ ( 𝐹 ∈ 𝑄 ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) |
| 10 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 11 | 10 1 | elsymgbas2 | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝑃 ↔ 𝐹 : 𝑁 –1-1-onto→ 𝑁 ) ) |
| 12 | 11 | anbi1d | ⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ∈ 𝑃 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ↔ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) ) |
| 13 | 9 12 | bitrid | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝑄 ↔ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) ) |