This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double group subtraction. (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpsubsub | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 5 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 6 | 5 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 7 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 8 | 1 2 7 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 − 𝑍 ) ∈ 𝐵 ) → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 9 | 4 6 8 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 10 | 1 3 7 | grpinvsub | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) = ( 𝑍 − 𝑌 ) ) |
| 11 | 10 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) = ( 𝑍 − 𝑌 ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
| 13 | 9 12 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |