This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.1 | |- X = ran G |
|
| grpinv.2 | |- U = ( GId ` G ) |
||
| grpinv.3 | |- N = ( inv ` G ) |
||
| Assertion | grpoinvid1 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) = B <-> ( A G B ) = U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.1 | |- X = ran G |
|
| 2 | grpinv.2 | |- U = ( GId ` G ) |
|
| 3 | grpinv.3 | |- N = ( inv ` G ) |
|
| 4 | oveq2 | |- ( ( N ` A ) = B -> ( A G ( N ` A ) ) = ( A G B ) ) |
|
| 5 | 4 | adantl | |- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G ( N ` A ) ) = ( A G B ) ) |
| 6 | 1 2 3 | grporinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) |
| 7 | 6 | 3adant3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` A ) ) = U ) |
| 8 | 7 | adantr | |- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G ( N ` A ) ) = U ) |
| 9 | 5 8 | eqtr3d | |- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G B ) = U ) |
| 10 | oveq2 | |- ( ( A G B ) = U -> ( ( N ` A ) G ( A G B ) ) = ( ( N ` A ) G U ) ) |
|
| 11 | 10 | adantl | |- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G ( A G B ) ) = ( ( N ` A ) G U ) ) |
| 12 | 1 2 3 | grpolinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = U ) |
| 13 | 12 | oveq1d | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( U G B ) ) |
| 14 | 13 | 3adant3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( U G B ) ) |
| 15 | 1 3 | grpoinvcl | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
| 16 | 15 | adantrr | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( N ` A ) e. X ) |
| 17 | simprl | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
|
| 18 | simprr | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
|
| 19 | 16 17 18 | 3jca | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( N ` A ) e. X /\ A e. X /\ B e. X ) ) |
| 20 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( ( N ` A ) e. X /\ A e. X /\ B e. X ) ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
| 21 | 19 20 | syldan | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
| 22 | 21 | 3impb | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
| 23 | 14 22 | eqtr3d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = ( ( N ` A ) G ( A G B ) ) ) |
| 24 | 1 2 | grpolid | |- ( ( G e. GrpOp /\ B e. X ) -> ( U G B ) = B ) |
| 25 | 24 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = B ) |
| 26 | 23 25 | eqtr3d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G ( A G B ) ) = B ) |
| 27 | 26 | adantr | |- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G ( A G B ) ) = B ) |
| 28 | 1 2 | grporid | |- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
| 29 | 15 28 | syldan | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
| 30 | 29 | 3adant3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
| 31 | 30 | adantr | |- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
| 32 | 11 27 31 | 3eqtr3rd | |- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( N ` A ) = B ) |
| 33 | 9 32 | impbida | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) = B <-> ( A G B ) = U ) ) |