This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grprcan.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grporcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprcan.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 3 | 1 2 | grpoidinv2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( GId ‘ 𝐺 ) 𝐺 𝐶 ) = 𝐶 ∧ ( 𝐶 𝐺 ( GId ‘ 𝐺 ) ) = 𝐶 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) ) ) |
| 4 | simpr | ⊢ ( ( ( 𝑦 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) → ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) | |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
| 6 | 5 | adantl | ⊢ ( ( ( ( ( GId ‘ 𝐺 ) 𝐺 𝐶 ) = 𝐶 ∧ ( 𝐶 𝐺 ( GId ‘ 𝐺 ) ) = 𝐶 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
| 7 | 3 6 | syl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
| 8 | 7 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
| 9 | oveq1 | ⊢ ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) ) | |
| 10 | 9 | ad2antll | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) ) |
| 11 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 12 | 11 | 3anassrs | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 13 | 12 | adantlrl | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 14 | 13 | adantrr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 15 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 16 | 15 | 3exp2 | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) ) ) ) |
| 17 | 16 | imp42 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 18 | 17 | adantllr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 19 | 18 | adantrr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 20 | 10 14 19 | 3eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 21 | 20 | adantrrl | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
| 22 | oveq2 | ⊢ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) | |
| 23 | 22 | ad2antrl | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 25 | oveq2 | ⊢ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) → ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) | |
| 26 | 25 | ad2antrl | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 28 | 21 24 27 | 3eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 29 | 1 2 | grporid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
| 31 | 1 2 | grporid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) = 𝐵 ) |
| 32 | 31 | ad2ant2r | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) = 𝐵 ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) = 𝐵 ) |
| 34 | 28 30 33 | 3eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → 𝐴 = 𝐵 ) |
| 35 | 34 | exp45 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑋 → ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) → 𝐴 = 𝐵 ) ) ) ) |
| 36 | 35 | rexlimdv | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) → 𝐴 = 𝐵 ) ) ) |
| 37 | 8 36 | mpd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) → 𝐴 = 𝐵 ) ) |
| 38 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) | |
| 39 | 37 38 | impbid1 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 40 | 39 | exp43 | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ↔ 𝐴 = 𝐵 ) ) ) ) ) |
| 41 | 40 | 3imp2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |