This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplrinv.b | |- B = ( Base ` G ) |
|
| grplrinv.p | |- .+ = ( +g ` G ) |
||
| grplrinv.i | |- .0. = ( 0g ` G ) |
||
| Assertion | grplrinv | |- ( G e. Grp -> A. x e. B E. y e. B ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | |- B = ( Base ` G ) |
|
| 2 | grplrinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grplrinv.i | |- .0. = ( 0g ` G ) |
|
| 4 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 5 | 1 4 | grpinvcl | |- ( ( G e. Grp /\ x e. B ) -> ( ( invg ` G ) ` x ) e. B ) |
| 6 | oveq1 | |- ( y = ( ( invg ` G ) ` x ) -> ( y .+ x ) = ( ( ( invg ` G ) ` x ) .+ x ) ) |
|
| 7 | 6 | eqeq1d | |- ( y = ( ( invg ` G ) ` x ) -> ( ( y .+ x ) = .0. <-> ( ( ( invg ` G ) ` x ) .+ x ) = .0. ) ) |
| 8 | oveq2 | |- ( y = ( ( invg ` G ) ` x ) -> ( x .+ y ) = ( x .+ ( ( invg ` G ) ` x ) ) ) |
|
| 9 | 8 | eqeq1d | |- ( y = ( ( invg ` G ) ` x ) -> ( ( x .+ y ) = .0. <-> ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) |
| 10 | 7 9 | anbi12d | |- ( y = ( ( invg ` G ) ` x ) -> ( ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) <-> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) ) |
| 11 | 10 | adantl | |- ( ( ( G e. Grp /\ x e. B ) /\ y = ( ( invg ` G ) ` x ) ) -> ( ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) <-> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) ) |
| 12 | 1 2 3 4 | grplinv | |- ( ( G e. Grp /\ x e. B ) -> ( ( ( invg ` G ) ` x ) .+ x ) = .0. ) |
| 13 | 1 2 3 4 | grprinv | |- ( ( G e. Grp /\ x e. B ) -> ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) |
| 14 | 12 13 | jca | |- ( ( G e. Grp /\ x e. B ) -> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) |
| 15 | 5 11 14 | rspcedvd | |- ( ( G e. Grp /\ x e. B ) -> E. y e. B ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) ) |
| 16 | 15 | ralrimiva | |- ( G e. Grp -> A. x e. B E. y e. B ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) ) |