This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplmulf1o.b | |- B = ( Base ` G ) |
|
| grplmulf1o.p | |- .+ = ( +g ` G ) |
||
| grplmulf1o.n | |- F = ( x e. B |-> ( X .+ x ) ) |
||
| Assertion | grplmulf1o | |- ( ( G e. Grp /\ X e. B ) -> F : B -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplmulf1o.b | |- B = ( Base ` G ) |
|
| 2 | grplmulf1o.p | |- .+ = ( +g ` G ) |
|
| 3 | grplmulf1o.n | |- F = ( x e. B |-> ( X .+ x ) ) |
|
| 4 | 1 2 | grpcl | |- ( ( G e. Grp /\ X e. B /\ x e. B ) -> ( X .+ x ) e. B ) |
| 5 | 4 | 3expa | |- ( ( ( G e. Grp /\ X e. B ) /\ x e. B ) -> ( X .+ x ) e. B ) |
| 6 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 7 | 1 6 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( ( invg ` G ) ` X ) e. B ) |
| 8 | 1 2 | grpcl | |- ( ( G e. Grp /\ ( ( invg ` G ) ` X ) e. B /\ y e. B ) -> ( ( ( invg ` G ) ` X ) .+ y ) e. B ) |
| 9 | 8 | 3expa | |- ( ( ( G e. Grp /\ ( ( invg ` G ) ` X ) e. B ) /\ y e. B ) -> ( ( ( invg ` G ) ` X ) .+ y ) e. B ) |
| 10 | 7 9 | syldanl | |- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> ( ( ( invg ` G ) ` X ) .+ y ) e. B ) |
| 11 | eqcom | |- ( x = ( ( ( invg ` G ) ` X ) .+ y ) <-> ( ( ( invg ` G ) ` X ) .+ y ) = x ) |
|
| 12 | simpll | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> G e. Grp ) |
|
| 13 | 10 | adantrl | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( ( invg ` G ) ` X ) .+ y ) e. B ) |
| 14 | simprl | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
|
| 15 | simplr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> X e. B ) |
|
| 16 | 1 2 | grplcan | |- ( ( G e. Grp /\ ( ( ( ( invg ` G ) ` X ) .+ y ) e. B /\ x e. B /\ X e. B ) ) -> ( ( X .+ ( ( ( invg ` G ) ` X ) .+ y ) ) = ( X .+ x ) <-> ( ( ( invg ` G ) ` X ) .+ y ) = x ) ) |
| 17 | 12 13 14 15 16 | syl13anc | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( X .+ ( ( ( invg ` G ) ` X ) .+ y ) ) = ( X .+ x ) <-> ( ( ( invg ` G ) ` X ) .+ y ) = x ) ) |
| 18 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 19 | 1 2 18 6 | grprinv | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( ( invg ` G ) ` X ) ) = ( 0g ` G ) ) |
| 20 | 19 | adantr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( X .+ ( ( invg ` G ) ` X ) ) = ( 0g ` G ) ) |
| 21 | 20 | oveq1d | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( X .+ ( ( invg ` G ) ` X ) ) .+ y ) = ( ( 0g ` G ) .+ y ) ) |
| 22 | 7 | adantr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( invg ` G ) ` X ) e. B ) |
| 23 | simprr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
|
| 24 | 1 2 12 15 22 23 | grpassd | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( X .+ ( ( invg ` G ) ` X ) ) .+ y ) = ( X .+ ( ( ( invg ` G ) ` X ) .+ y ) ) ) |
| 25 | 1 2 18 | grplid | |- ( ( G e. Grp /\ y e. B ) -> ( ( 0g ` G ) .+ y ) = y ) |
| 26 | 25 | ad2ant2rl | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( 0g ` G ) .+ y ) = y ) |
| 27 | 21 24 26 | 3eqtr3d | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( X .+ ( ( ( invg ` G ) ` X ) .+ y ) ) = y ) |
| 28 | 27 | eqeq1d | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( X .+ ( ( ( invg ` G ) ` X ) .+ y ) ) = ( X .+ x ) <-> y = ( X .+ x ) ) ) |
| 29 | 17 28 | bitr3d | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( ( ( invg ` G ) ` X ) .+ y ) = x <-> y = ( X .+ x ) ) ) |
| 30 | 11 29 | bitrid | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( x = ( ( ( invg ` G ) ` X ) .+ y ) <-> y = ( X .+ x ) ) ) |
| 31 | 3 5 10 30 | f1o2d | |- ( ( G e. Grp /\ X e. B ) -> F : B -1-1-onto-> B ) |