This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvcnv | ⊢ ( 𝐺 ∈ Grp → ◡ 𝑁 = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑥 ) ) | |
| 4 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑥 ) ∈ 𝐵 ) |
| 5 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑦 ) ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 8 | 1 6 7 2 | grpinvid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑦 ) = 𝑥 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 9 | 8 | 3com23 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑦 ) = 𝑥 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 10 | 1 6 7 2 | grpinvid2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑥 ) = 𝑦 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 11 | 9 10 | bitr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑦 ) = 𝑥 ↔ ( 𝑁 ‘ 𝑥 ) = 𝑦 ) ) |
| 12 | 11 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ‘ 𝑦 ) = 𝑥 ↔ ( 𝑁 ‘ 𝑥 ) = 𝑦 ) ) |
| 13 | eqcom | ⊢ ( 𝑥 = ( 𝑁 ‘ 𝑦 ) ↔ ( 𝑁 ‘ 𝑦 ) = 𝑥 ) | |
| 14 | eqcom | ⊢ ( 𝑦 = ( 𝑁 ‘ 𝑥 ) ↔ ( 𝑁 ‘ 𝑥 ) = 𝑦 ) | |
| 15 | 12 13 14 | 3bitr4g | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = ( 𝑁 ‘ 𝑦 ) ↔ 𝑦 = ( 𝑁 ‘ 𝑥 ) ) ) |
| 16 | 3 4 5 15 | f1ocnv2d | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑥 ) ) : 𝐵 –1-1-onto→ 𝐵 ∧ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 17 | 16 | simprd | ⊢ ( 𝐺 ∈ Grp → ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑦 ) ) ) |
| 18 | 1 2 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |
| 19 | 18 | feqmptd | ⊢ ( 𝐺 ∈ Grp → 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑥 ) ) ) |
| 20 | 19 | cnveqd | ⊢ ( 𝐺 ∈ Grp → ◡ 𝑁 = ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑥 ) ) ) |
| 21 | 18 | feqmptd | ⊢ ( 𝐺 ∈ Grp → 𝑁 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑁 ‘ 𝑦 ) ) ) |
| 22 | 17 20 21 | 3eqtr4d | ⊢ ( 𝐺 ∈ Grp → ◡ 𝑁 = 𝑁 ) |