This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006) (Revised by AV, 1-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidinv.b | |- B = ( Base ` G ) |
|
| grpidinv.p | |- .+ = ( +g ` G ) |
||
| Assertion | grpidinv | |- ( G e. Grp -> E. u e. B A. x e. B ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidinv.b | |- B = ( Base ` G ) |
|
| 2 | grpidinv.p | |- .+ = ( +g ` G ) |
|
| 3 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 4 | 1 3 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 5 | oveq1 | |- ( u = ( 0g ` G ) -> ( u .+ x ) = ( ( 0g ` G ) .+ x ) ) |
|
| 6 | 5 | eqeq1d | |- ( u = ( 0g ` G ) -> ( ( u .+ x ) = x <-> ( ( 0g ` G ) .+ x ) = x ) ) |
| 7 | oveq2 | |- ( u = ( 0g ` G ) -> ( x .+ u ) = ( x .+ ( 0g ` G ) ) ) |
|
| 8 | 7 | eqeq1d | |- ( u = ( 0g ` G ) -> ( ( x .+ u ) = x <-> ( x .+ ( 0g ` G ) ) = x ) ) |
| 9 | 6 8 | anbi12d | |- ( u = ( 0g ` G ) -> ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) <-> ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) ) ) |
| 10 | eqeq2 | |- ( u = ( 0g ` G ) -> ( ( y .+ x ) = u <-> ( y .+ x ) = ( 0g ` G ) ) ) |
|
| 11 | eqeq2 | |- ( u = ( 0g ` G ) -> ( ( x .+ y ) = u <-> ( x .+ y ) = ( 0g ` G ) ) ) |
|
| 12 | 10 11 | anbi12d | |- ( u = ( 0g ` G ) -> ( ( ( y .+ x ) = u /\ ( x .+ y ) = u ) <-> ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) |
| 13 | 12 | rexbidv | |- ( u = ( 0g ` G ) -> ( E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) <-> E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) |
| 14 | 9 13 | anbi12d | |- ( u = ( 0g ` G ) -> ( ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) <-> ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) ) |
| 15 | 14 | ralbidv | |- ( u = ( 0g ` G ) -> ( A. x e. B ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) <-> A. x e. B ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) ) |
| 16 | 15 | adantl | |- ( ( G e. Grp /\ u = ( 0g ` G ) ) -> ( A. x e. B ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) <-> A. x e. B ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) ) |
| 17 | 1 2 3 | grpidinv2 | |- ( ( G e. Grp /\ x e. B ) -> ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) |
| 18 | 17 | ralrimiva | |- ( G e. Grp -> A. x e. B ( ( ( ( 0g ` G ) .+ x ) = x /\ ( x .+ ( 0g ` G ) ) = x ) /\ E. y e. B ( ( y .+ x ) = ( 0g ` G ) /\ ( x .+ y ) = ( 0g ` G ) ) ) ) |
| 19 | 4 16 18 | rspcedvd | |- ( G e. Grp -> E. u e. B A. x e. B ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E. y e. B ( ( y .+ x ) = u /\ ( x .+ y ) = u ) ) ) |