This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for grlimgrtri . (Contributed by AV, 23-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimgrtrilem1.v | |- V = ( Vtx ` G ) |
|
| grlimgrtrilem1.n | |- N = ( G ClNeighbVtx a ) |
||
| grlimgrtrilem1.i | |- I = ( Edg ` G ) |
||
| grlimgrtrilem1.k | |- K = { x e. I | x C_ N } |
||
| grlimgrtrilem2.m | |- M = ( H ClNeighbVtx ( F ` a ) ) |
||
| grlimgrtrilem2.j | |- J = ( Edg ` H ) |
||
| grlimgrtrilem2.l | |- L = { x e. J | x C_ M } |
||
| Assertion | grlimgrtrilem2 | |- ( ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) /\ A. i e. K ( f " i ) = ( g ` i ) /\ { b , c } e. K ) -> { ( f ` b ) , ( f ` c ) } e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimgrtrilem1.v | |- V = ( Vtx ` G ) |
|
| 2 | grlimgrtrilem1.n | |- N = ( G ClNeighbVtx a ) |
|
| 3 | grlimgrtrilem1.i | |- I = ( Edg ` G ) |
|
| 4 | grlimgrtrilem1.k | |- K = { x e. I | x C_ N } |
|
| 5 | grlimgrtrilem2.m | |- M = ( H ClNeighbVtx ( F ` a ) ) |
|
| 6 | grlimgrtrilem2.j | |- J = ( Edg ` H ) |
|
| 7 | grlimgrtrilem2.l | |- L = { x e. J | x C_ M } |
|
| 8 | imaeq2 | |- ( i = { b , c } -> ( f " i ) = ( f " { b , c } ) ) |
|
| 9 | fveq2 | |- ( i = { b , c } -> ( g ` i ) = ( g ` { b , c } ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( i = { b , c } -> ( ( f " i ) = ( g ` i ) <-> ( f " { b , c } ) = ( g ` { b , c } ) ) ) |
| 11 | 10 | rspcv | |- ( { b , c } e. K -> ( A. i e. K ( f " i ) = ( g ` i ) -> ( f " { b , c } ) = ( g ` { b , c } ) ) ) |
| 12 | f1ofn | |- ( f : N -1-1-onto-> M -> f Fn N ) |
|
| 13 | 12 | adantr | |- ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) -> f Fn N ) |
| 14 | 13 | adantl | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> f Fn N ) |
| 15 | 4 | eleq2i | |- ( { b , c } e. K <-> { b , c } e. { x e. I | x C_ N } ) |
| 16 | sseq1 | |- ( x = { b , c } -> ( x C_ N <-> { b , c } C_ N ) ) |
|
| 17 | 16 | elrab | |- ( { b , c } e. { x e. I | x C_ N } <-> ( { b , c } e. I /\ { b , c } C_ N ) ) |
| 18 | 15 17 | bitri | |- ( { b , c } e. K <-> ( { b , c } e. I /\ { b , c } C_ N ) ) |
| 19 | vex | |- b e. _V |
|
| 20 | vex | |- c e. _V |
|
| 21 | 19 20 | prss | |- ( ( b e. N /\ c e. N ) <-> { b , c } C_ N ) |
| 22 | simpl | |- ( ( b e. N /\ c e. N ) -> b e. N ) |
|
| 23 | 21 22 | sylbir | |- ( { b , c } C_ N -> b e. N ) |
| 24 | 18 23 | simplbiim | |- ( { b , c } e. K -> b e. N ) |
| 25 | 24 | adantr | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> b e. N ) |
| 26 | simpr | |- ( ( b e. N /\ c e. N ) -> c e. N ) |
|
| 27 | 21 26 | sylbir | |- ( { b , c } C_ N -> c e. N ) |
| 28 | 18 27 | simplbiim | |- ( { b , c } e. K -> c e. N ) |
| 29 | 28 | adantr | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> c e. N ) |
| 30 | fnimapr | |- ( ( f Fn N /\ b e. N /\ c e. N ) -> ( f " { b , c } ) = { ( f ` b ) , ( f ` c ) } ) |
|
| 31 | 14 25 29 30 | syl3anc | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> ( f " { b , c } ) = { ( f ` b ) , ( f ` c ) } ) |
| 32 | 31 | eqeq1d | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> ( ( f " { b , c } ) = ( g ` { b , c } ) <-> { ( f ` b ) , ( f ` c ) } = ( g ` { b , c } ) ) ) |
| 33 | ssrab2 | |- { x e. J | x C_ M } C_ J |
|
| 34 | 7 33 | eqsstri | |- L C_ J |
| 35 | f1of | |- ( g : K -1-1-onto-> L -> g : K --> L ) |
|
| 36 | 35 | adantl | |- ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) -> g : K --> L ) |
| 37 | 36 | adantl | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> g : K --> L ) |
| 38 | simpl | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> { b , c } e. K ) |
|
| 39 | 37 38 | ffvelcdmd | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> ( g ` { b , c } ) e. L ) |
| 40 | 34 39 | sselid | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> ( g ` { b , c } ) e. J ) |
| 41 | eleq1 | |- ( { ( f ` b ) , ( f ` c ) } = ( g ` { b , c } ) -> ( { ( f ` b ) , ( f ` c ) } e. J <-> ( g ` { b , c } ) e. J ) ) |
|
| 42 | 40 41 | syl5ibrcom | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> ( { ( f ` b ) , ( f ` c ) } = ( g ` { b , c } ) -> { ( f ` b ) , ( f ` c ) } e. J ) ) |
| 43 | 32 42 | sylbid | |- ( ( { b , c } e. K /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) ) -> ( ( f " { b , c } ) = ( g ` { b , c } ) -> { ( f ` b ) , ( f ` c ) } e. J ) ) |
| 44 | 43 | ex | |- ( { b , c } e. K -> ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) -> ( ( f " { b , c } ) = ( g ` { b , c } ) -> { ( f ` b ) , ( f ` c ) } e. J ) ) ) |
| 45 | 44 | com23 | |- ( { b , c } e. K -> ( ( f " { b , c } ) = ( g ` { b , c } ) -> ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) -> { ( f ` b ) , ( f ` c ) } e. J ) ) ) |
| 46 | 11 45 | syld | |- ( { b , c } e. K -> ( A. i e. K ( f " i ) = ( g ` i ) -> ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) -> { ( f ` b ) , ( f ` c ) } e. J ) ) ) |
| 47 | 46 | 3imp31 | |- ( ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L ) /\ A. i e. K ( f " i ) = ( g ` i ) /\ { b , c } e. K ) -> { ( f ` b ) , ( f ` c ) } e. J ) |