This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there are two bijections f and g mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) and the edges between the vertices in N onto the edges between the vertices in M , so that the mapped vertices of an edge E containing the vertex A is an edge between the vertices in M . (Contributed by AV, 25-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| clnbgrvtxedg.i | |- I = ( Edg ` G ) |
||
| clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
||
| grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
||
| grlimedgclnbgr.j | |- J = ( Edg ` H ) |
||
| grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
||
| Assertion | grlimedgclnbgr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| 2 | clnbgrvtxedg.i | |- I = ( Edg ` G ) |
|
| 3 | clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
|
| 4 | grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
|
| 5 | grlimedgclnbgr.j | |- J = ( Edg ` H ) |
|
| 6 | grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
|
| 7 | simp1l | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> G e. USPGraph ) |
|
| 8 | simp1r | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> H e. USPGraph ) |
|
| 9 | simp2 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> F e. ( G GraphLocIso H ) ) |
|
| 10 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 11 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 12 | eqid | |- ( G ClNeighbVtx v ) = ( G ClNeighbVtx v ) |
|
| 13 | eqid | |- ( H ClNeighbVtx ( F ` v ) ) = ( H ClNeighbVtx ( F ` v ) ) |
|
| 14 | sseq1 | |- ( x = y -> ( x C_ ( G ClNeighbVtx v ) <-> y C_ ( G ClNeighbVtx v ) ) ) |
|
| 15 | 14 | cbvrabv | |- { x e. I | x C_ ( G ClNeighbVtx v ) } = { y e. I | y C_ ( G ClNeighbVtx v ) } |
| 16 | sseq1 | |- ( x = y -> ( x C_ ( H ClNeighbVtx ( F ` v ) ) <-> y C_ ( H ClNeighbVtx ( F ` v ) ) ) ) |
|
| 17 | 16 | cbvrabv | |- { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } = { y e. J | y C_ ( H ClNeighbVtx ( F ` v ) ) } |
| 18 | 10 11 12 13 2 5 15 17 | usgrlimprop | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 19 | 7 8 9 18 | syl3anc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 20 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 21 | 20 | adantr | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> G e. UHGraph ) |
| 22 | 21 | 3ad2ant1 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> G e. UHGraph ) |
| 23 | 2 | eleq2i | |- ( E e. I <-> E e. ( Edg ` G ) ) |
| 24 | 23 | biimpi | |- ( E e. I -> E e. ( Edg ` G ) ) |
| 25 | 24 | adantr | |- ( ( E e. I /\ A e. E ) -> E e. ( Edg ` G ) ) |
| 26 | 25 | 3ad2ant3 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E e. ( Edg ` G ) ) |
| 27 | simp3r | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> A e. E ) |
|
| 28 | uhgredgrnv | |- ( ( G e. UHGraph /\ E e. ( Edg ` G ) /\ A e. E ) -> A e. ( Vtx ` G ) ) |
|
| 29 | 22 26 27 28 | syl3anc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> A e. ( Vtx ` G ) ) |
| 30 | eqidd | |- ( v = A -> f = f ) |
|
| 31 | oveq2 | |- ( v = A -> ( G ClNeighbVtx v ) = ( G ClNeighbVtx A ) ) |
|
| 32 | fveq2 | |- ( v = A -> ( F ` v ) = ( F ` A ) ) |
|
| 33 | 32 | oveq2d | |- ( v = A -> ( H ClNeighbVtx ( F ` v ) ) = ( H ClNeighbVtx ( F ` A ) ) ) |
| 34 | 30 31 33 | f1oeq123d | |- ( v = A -> ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) <-> f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 35 | eqidd | |- ( v = A -> g = g ) |
|
| 36 | 31 | sseq2d | |- ( v = A -> ( x C_ ( G ClNeighbVtx v ) <-> x C_ ( G ClNeighbVtx A ) ) ) |
| 37 | 36 | rabbidv | |- ( v = A -> { x e. I | x C_ ( G ClNeighbVtx v ) } = { x e. I | x C_ ( G ClNeighbVtx A ) } ) |
| 38 | 33 | sseq2d | |- ( v = A -> ( x C_ ( H ClNeighbVtx ( F ` v ) ) <-> x C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 39 | 38 | rabbidv | |- ( v = A -> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } = { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) |
| 40 | 35 37 39 | f1oeq123d | |- ( v = A -> ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } <-> g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) |
| 41 | 37 | raleqdv | |- ( v = A -> ( A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) <-> A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) |
| 42 | 40 41 | anbi12d | |- ( v = A -> ( ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) <-> ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) |
| 43 | 42 | exbidv | |- ( v = A -> ( E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) <-> E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) |
| 44 | 34 43 | anbi12d | |- ( v = A -> ( ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) <-> ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 45 | 44 | exbidv | |- ( v = A -> ( E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) <-> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 46 | 45 | rspcv | |- ( A e. ( Vtx ` G ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) -> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 47 | 29 46 | syl | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) -> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 48 | eqid | |- f = f |
|
| 49 | id | |- ( f = f -> f = f ) |
|
| 50 | 1 | a1i | |- ( f = f -> N = ( G ClNeighbVtx A ) ) |
| 51 | 4 | a1i | |- ( f = f -> M = ( H ClNeighbVtx ( F ` A ) ) ) |
| 52 | 49 50 51 | f1oeq123d | |- ( f = f -> ( f : N -1-1-onto-> M <-> f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 53 | 48 52 | ax-mp | |- ( f : N -1-1-onto-> M <-> f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) |
| 54 | 53 | biimpri | |- ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) -> f : N -1-1-onto-> M ) |
| 55 | 54 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> f : N -1-1-onto-> M ) |
| 56 | 55 | adantr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> f : N -1-1-onto-> M ) |
| 57 | eqid | |- g = g |
|
| 58 | id | |- ( g = g -> g = g ) |
|
| 59 | 1 | sseq2i | |- ( x C_ N <-> x C_ ( G ClNeighbVtx A ) ) |
| 60 | 3 59 | rabbieq | |- K = { x e. I | x C_ ( G ClNeighbVtx A ) } |
| 61 | 60 | a1i | |- ( g = g -> K = { x e. I | x C_ ( G ClNeighbVtx A ) } ) |
| 62 | 4 | sseq2i | |- ( x C_ M <-> x C_ ( H ClNeighbVtx ( F ` A ) ) ) |
| 63 | 6 62 | rabbieq | |- L = { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } |
| 64 | 63 | a1i | |- ( g = g -> L = { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) |
| 65 | 58 61 64 | f1oeq123d | |- ( g = g -> ( g : K -1-1-onto-> L <-> g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) |
| 66 | 57 65 | ax-mp | |- ( g : K -1-1-onto-> L <-> g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) |
| 67 | 66 | biimpri | |- ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> g : K -1-1-onto-> L ) |
| 68 | 67 | adantr | |- ( ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> g : K -1-1-onto-> L ) |
| 69 | 68 | adantl | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> g : K -1-1-onto-> L ) |
| 70 | simp3l | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E e. I ) |
|
| 71 | eqid | |- ( G ClNeighbVtx A ) = ( G ClNeighbVtx A ) |
|
| 72 | eqid | |- { x e. I | x C_ ( G ClNeighbVtx A ) } = { x e. I | x C_ ( G ClNeighbVtx A ) } |
|
| 73 | 71 2 72 | clnbgrvtxedg | |- ( ( G e. UHGraph /\ E e. I /\ A e. E ) -> E e. { x e. I | x C_ ( G ClNeighbVtx A ) } ) |
| 74 | 22 70 27 73 | syl3anc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E e. { x e. I | x C_ ( G ClNeighbVtx A ) } ) |
| 75 | imaeq2 | |- ( e = E -> ( f " e ) = ( f " E ) ) |
|
| 76 | fveq2 | |- ( e = E -> ( g ` e ) = ( g ` E ) ) |
|
| 77 | 75 76 | eqeq12d | |- ( e = E -> ( ( f " e ) = ( g ` e ) <-> ( f " E ) = ( g ` E ) ) ) |
| 78 | 77 | rspcv | |- ( E e. { x e. I | x C_ ( G ClNeighbVtx A ) } -> ( A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) -> ( f " E ) = ( g ` E ) ) ) |
| 79 | 74 78 | syl | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) -> ( f " E ) = ( g ` E ) ) ) |
| 80 | 79 | adantld | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> ( f " E ) = ( g ` E ) ) ) |
| 81 | 80 | adantr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> ( f " E ) = ( g ` E ) ) ) |
| 82 | 81 | imp | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> ( f " E ) = ( g ` E ) ) |
| 83 | 56 69 82 | 3jca | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) |
| 84 | 83 | ex | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 85 | 84 | eximdv | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 86 | 85 | expimpd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 87 | 86 | eximdv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 88 | 47 87 | syld | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 89 | 88 | adantld | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 90 | 19 89 | mpd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) |