This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlictr | ⊢ ( ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇 ) → 𝑅 ≃𝑙𝑔𝑟 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlicrcl | ⊢ ( 𝑅 ≃𝑙𝑔𝑟 𝑆 → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ) | |
| 2 | grlicrcl | ⊢ ( 𝑆 ≃𝑙𝑔𝑟 𝑇 → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇 ) → ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) ) |
| 4 | eqid | ⊢ ( Vtx ‘ 𝑅 ) = ( Vtx ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 6 | 4 5 | grilcbri | ⊢ ( 𝑅 ≃𝑙𝑔𝑟 𝑆 → ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) ) |
| 7 | eqid | ⊢ ( Vtx ‘ 𝑇 ) = ( Vtx ‘ 𝑇 ) | |
| 8 | 5 7 | grilcbri | ⊢ ( 𝑆 ≃𝑙𝑔𝑟 𝑇 → ∃ ℎ ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) ) |
| 9 | vex | ⊢ ℎ ∈ V | |
| 10 | vex | ⊢ 𝑔 ∈ V | |
| 11 | 9 10 | coex | ⊢ ( ℎ ∘ 𝑔 ) ∈ V |
| 12 | 11 | a1i | ⊢ ( ( ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) ∧ ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) ) → ( ℎ ∘ 𝑔 ) ∈ V ) |
| 13 | f1oco | ⊢ ( ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ) → ( ℎ ∘ 𝑔 ) : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) | |
| 14 | 13 | ad2ant2r | ⊢ ( ( ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) ∧ ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) ) → ( ℎ ∘ 𝑔 ) : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) |
| 15 | f1of | ⊢ ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → 𝑔 : ( Vtx ‘ 𝑅 ) ⟶ ( Vtx ‘ 𝑆 ) ) | |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( 𝑔 ‘ 𝑟 ) ∈ ( Vtx ‘ 𝑆 ) ) |
| 17 | oveq2 | ⊢ ( 𝑠 = ( 𝑔 ‘ 𝑟 ) → ( 𝑆 ClNeighbVtx 𝑠 ) = ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑠 = ( 𝑔 ‘ 𝑟 ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) = ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑠 = ( 𝑔 ‘ 𝑟 ) → ( ℎ ‘ 𝑠 ) = ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑠 = ( 𝑔 ‘ 𝑟 ) → ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) = ( 𝑇 ClNeighbVtx ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝑠 = ( 𝑔 ‘ 𝑟 ) → ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) = ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) ) ) |
| 22 | 18 21 | breq12d | ⊢ ( 𝑠 = ( 𝑔 ‘ 𝑟 ) → ( ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ↔ ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) ) ) ) |
| 23 | 22 | rspcv | ⊢ ( ( 𝑔 ‘ 𝑟 ) ∈ ( Vtx ‘ 𝑆 ) → ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) ) ) ) |
| 24 | 16 23 | syl | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) ) ) ) |
| 25 | fvco3 | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) ⟶ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) = ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) | |
| 26 | 15 25 | sylan | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) = ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) |
| 27 | 26 | eqcomd | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) = ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) |
| 28 | 27 | oveq2d | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( 𝑇 ClNeighbVtx ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) = ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) |
| 29 | 28 | oveq2d | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) ) = ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) |
| 30 | 29 | breq2d | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ ( 𝑔 ‘ 𝑟 ) ) ) ) ↔ ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 31 | 24 30 | sylibd | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 32 | 31 | ex | ⊢ ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → ( 𝑟 ∈ ( Vtx ‘ 𝑅 ) → ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) ) |
| 33 | 32 | com3r | ⊢ ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) → ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → ( 𝑟 ∈ ( Vtx ‘ 𝑅 ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) ) |
| 34 | 33 | imp31 | ⊢ ( ( ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ∧ 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) |
| 35 | 34 | anim1ci | ⊢ ( ( ( ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ∧ 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) ∧ ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) → ( ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ∧ ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 36 | grictr | ⊢ ( ( ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ∧ ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) → ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ∧ 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) ∧ ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) → ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) |
| 38 | 37 | ex | ⊢ ( ( ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ∧ 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ) → ( ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) → ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 39 | 38 | ralimdva | ⊢ ( ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ∧ 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ) → ( ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) → ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 40 | 39 | expimpd | ⊢ ( ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) → ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) → ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 41 | 40 | adantl | ⊢ ( ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) → ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) → ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 42 | 41 | imp | ⊢ ( ( ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) ∧ ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) ) → ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) |
| 43 | 14 42 | jca | ⊢ ( ( ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) ∧ ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) ) → ( ( ℎ ∘ 𝑔 ) : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 44 | f1oeq1 | ⊢ ( 𝑓 = ( ℎ ∘ 𝑔 ) → ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ↔ ( ℎ ∘ 𝑔 ) : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ) | |
| 45 | fveq1 | ⊢ ( 𝑓 = ( ℎ ∘ 𝑔 ) → ( 𝑓 ‘ 𝑟 ) = ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) | |
| 46 | 45 | oveq2d | ⊢ ( 𝑓 = ( ℎ ∘ 𝑔 ) → ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) = ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) |
| 47 | 46 | oveq2d | ⊢ ( 𝑓 = ( ℎ ∘ 𝑔 ) → ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) = ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) |
| 48 | 47 | breq2d | ⊢ ( 𝑓 = ( ℎ ∘ 𝑔 ) → ( ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ↔ ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 49 | 48 | ralbidv | ⊢ ( 𝑓 = ( ℎ ∘ 𝑔 ) → ( ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ↔ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) |
| 50 | 44 49 | anbi12d | ⊢ ( 𝑓 = ( ℎ ∘ 𝑔 ) → ( ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ↔ ( ( ℎ ∘ 𝑔 ) : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ( ℎ ∘ 𝑔 ) ‘ 𝑟 ) ) ) ) ) ) |
| 51 | 12 43 50 | spcedv | ⊢ ( ( ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) ∧ ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) |
| 52 | 51 | ex | ⊢ ( ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) → ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) ) |
| 53 | 52 | exlimiv | ⊢ ( ∃ ℎ ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) → ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) ) |
| 54 | 53 | com12 | ⊢ ( ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) → ( ∃ ℎ ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) ) |
| 55 | 54 | exlimiv | ⊢ ( ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) → ( ∃ ℎ ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) ) |
| 56 | 55 | imp | ⊢ ( ( ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑔 ‘ 𝑟 ) ) ) ) ∧ ∃ ℎ ( ℎ : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑠 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑠 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( ℎ ‘ 𝑠 ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) |
| 57 | 6 8 56 | syl2an | ⊢ ( ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇 ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) |
| 58 | 57 | adantr | ⊢ ( ( ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇 ) ∧ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) |
| 59 | 4 7 | dfgrlic2 | ⊢ ( ( 𝑅 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑅 ≃𝑙𝑔𝑟 𝑇 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) ) |
| 60 | 59 | ad2ant2rl | ⊢ ( ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) → ( 𝑅 ≃𝑙𝑔𝑟 𝑇 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) ) |
| 61 | 60 | adantl | ⊢ ( ( ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇 ) ∧ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) ) → ( 𝑅 ≃𝑙𝑔𝑟 𝑇 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑅 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∀ 𝑟 ∈ ( Vtx ‘ 𝑅 ) ( 𝑅 ISubGr ( 𝑅 ClNeighbVtx 𝑟 ) ) ≃𝑔𝑟 ( 𝑇 ISubGr ( 𝑇 ClNeighbVtx ( 𝑓 ‘ 𝑟 ) ) ) ) ) ) |
| 62 | 58 61 | mpbird | ⊢ ( ( ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇 ) ∧ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) ) → 𝑅 ≃𝑙𝑔𝑟 𝑇 ) |
| 63 | 3 62 | mpdan | ⊢ ( ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇 ) → 𝑅 ≃𝑙𝑔𝑟 𝑇 ) |