This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlictr | |- ( ( R ~=lgr S /\ S ~=lgr T ) -> R ~=lgr T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlicrcl | |- ( R ~=lgr S -> ( R e. _V /\ S e. _V ) ) |
|
| 2 | grlicrcl | |- ( S ~=lgr T -> ( S e. _V /\ T e. _V ) ) |
|
| 3 | 1 2 | anim12i | |- ( ( R ~=lgr S /\ S ~=lgr T ) -> ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) |
| 4 | eqid | |- ( Vtx ` R ) = ( Vtx ` R ) |
|
| 5 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 6 | 4 5 | grilcbri | |- ( R ~=lgr S -> E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) |
| 7 | eqid | |- ( Vtx ` T ) = ( Vtx ` T ) |
|
| 8 | 5 7 | grilcbri | |- ( S ~=lgr T -> E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) ) |
| 9 | vex | |- h e. _V |
|
| 10 | vex | |- g e. _V |
|
| 11 | 9 10 | coex | |- ( h o. g ) e. _V |
| 12 | 11 | a1i | |- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( h o. g ) e. _V ) |
| 13 | f1oco | |- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) -> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) |
|
| 14 | 13 | ad2ant2r | |- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) |
| 15 | f1of | |- ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> g : ( Vtx ` R ) --> ( Vtx ` S ) ) |
|
| 16 | 15 | ffvelcdmda | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( g ` r ) e. ( Vtx ` S ) ) |
| 17 | oveq2 | |- ( s = ( g ` r ) -> ( S ClNeighbVtx s ) = ( S ClNeighbVtx ( g ` r ) ) ) |
|
| 18 | 17 | oveq2d | |- ( s = ( g ` r ) -> ( S ISubGr ( S ClNeighbVtx s ) ) = ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) |
| 19 | fveq2 | |- ( s = ( g ` r ) -> ( h ` s ) = ( h ` ( g ` r ) ) ) |
|
| 20 | 19 | oveq2d | |- ( s = ( g ` r ) -> ( T ClNeighbVtx ( h ` s ) ) = ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) |
| 21 | 20 | oveq2d | |- ( s = ( g ` r ) -> ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) = ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) |
| 22 | 18 21 | breq12d | |- ( s = ( g ` r ) -> ( ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) <-> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
| 23 | 22 | rspcv | |- ( ( g ` r ) e. ( Vtx ` S ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
| 24 | 16 23 | syl | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
| 25 | fvco3 | |- ( ( g : ( Vtx ` R ) --> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( h o. g ) ` r ) = ( h ` ( g ` r ) ) ) |
|
| 26 | 15 25 | sylan | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( h o. g ) ` r ) = ( h ` ( g ` r ) ) ) |
| 27 | 26 | eqcomd | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( h ` ( g ` r ) ) = ( ( h o. g ) ` r ) ) |
| 28 | 27 | oveq2d | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( T ClNeighbVtx ( h ` ( g ` r ) ) ) = ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) |
| 29 | 28 | oveq2d | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) = ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 30 | 29 | breq2d | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) <-> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 31 | 24 30 | sylibd | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 32 | 31 | ex | |- ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> ( r e. ( Vtx ` R ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
| 33 | 32 | com3r | |- ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> ( r e. ( Vtx ` R ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
| 34 | 33 | imp31 | |- ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 35 | 34 | anim1ci | |- ( ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) /\ ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) /\ ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 36 | grictr | |- ( ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) /\ ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
|
| 37 | 35 36 | syl | |- ( ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) /\ ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 38 | 37 | ex | |- ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 39 | 38 | ralimdva | |- ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) -> ( A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 40 | 39 | expimpd | |- ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 41 | 40 | adantl | |- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 42 | 41 | imp | |- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 43 | 14 42 | jca | |- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 44 | f1oeq1 | |- ( f = ( h o. g ) -> ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) <-> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) ) |
|
| 45 | fveq1 | |- ( f = ( h o. g ) -> ( f ` r ) = ( ( h o. g ) ` r ) ) |
|
| 46 | 45 | oveq2d | |- ( f = ( h o. g ) -> ( T ClNeighbVtx ( f ` r ) ) = ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) |
| 47 | 46 | oveq2d | |- ( f = ( h o. g ) -> ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) = ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 48 | 47 | breq2d | |- ( f = ( h o. g ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) <-> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 49 | 48 | ralbidv | |- ( f = ( h o. g ) -> ( A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) <-> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 50 | 44 49 | anbi12d | |- ( f = ( h o. g ) -> ( ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) <-> ( ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
| 51 | 12 43 50 | spcedv | |- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
| 52 | 51 | ex | |- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 53 | 52 | exlimiv | |- ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 54 | 53 | com12 | |- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 55 | 54 | exlimiv | |- ( E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 56 | 55 | imp | |- ( ( E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) /\ E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
| 57 | 6 8 56 | syl2an | |- ( ( R ~=lgr S /\ S ~=lgr T ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
| 58 | 57 | adantr | |- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
| 59 | 4 7 | dfgrlic2 | |- ( ( R e. _V /\ T e. _V ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 60 | 59 | ad2ant2rl | |- ( ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 61 | 60 | adantl | |- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 62 | 58 61 | mpbird | |- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> R ~=lgr T ) |
| 63 | 3 62 | mpdan | |- ( ( R ~=lgr S /\ S ~=lgr T ) -> R ~=lgr T ) |