This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimidvtxsdg.g | |- ( ph -> G e. UHGraph ) |
|
| grimidvtxsdg.h | |- ( ph -> H e. V ) |
||
| grimidvtxsdg.v | |- ( ph -> ( Vtx ` G ) = ( Vtx ` H ) ) |
||
| grimidvtxsdg.e | |- ( ph -> ( iEdg ` G ) = ( iEdg ` H ) ) |
||
| Assertion | grimidvtxedg | |- ( ph -> ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimidvtxsdg.g | |- ( ph -> G e. UHGraph ) |
|
| 2 | grimidvtxsdg.h | |- ( ph -> H e. V ) |
|
| 3 | grimidvtxsdg.v | |- ( ph -> ( Vtx ` G ) = ( Vtx ` H ) ) |
|
| 4 | grimidvtxsdg.e | |- ( ph -> ( iEdg ` G ) = ( iEdg ` H ) ) |
|
| 5 | f1oi | |- ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) |
|
| 6 | 3 | f1oeq3d | |- ( ph -> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) <-> ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) ) |
| 7 | 5 6 | mpbii | |- ( ph -> ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 8 | funi | |- Fun _I |
|
| 9 | fvex | |- ( iEdg ` G ) e. _V |
|
| 10 | 9 | dmex | |- dom ( iEdg ` G ) e. _V |
| 11 | resfunexg | |- ( ( Fun _I /\ dom ( iEdg ` G ) e. _V ) -> ( _I |` dom ( iEdg ` G ) ) e. _V ) |
|
| 12 | 8 10 11 | mp2an | |- ( _I |` dom ( iEdg ` G ) ) e. _V |
| 13 | 12 | a1i | |- ( ph -> ( _I |` dom ( iEdg ` G ) ) e. _V ) |
| 14 | f1oi | |- ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` G ) |
|
| 15 | 4 | dmeqd | |- ( ph -> dom ( iEdg ` G ) = dom ( iEdg ` H ) ) |
| 16 | 15 | f1oeq3d | |- ( ph -> ( ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` G ) <-> ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
| 17 | 14 16 | mpbii | |- ( ph -> ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
| 18 | fvresi | |- ( i e. dom ( iEdg ` G ) -> ( ( _I |` dom ( iEdg ` G ) ) ` i ) = i ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` dom ( iEdg ` G ) ) ` i ) = i ) |
| 20 | 19 | fveq2d | |- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
| 21 | 4 | eqcomd | |- ( ph -> ( iEdg ` H ) = ( iEdg ` G ) ) |
| 22 | 21 | fveq1d | |- ( ph -> ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` G ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` G ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) ) |
| 24 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 25 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 26 | 24 25 | uhgrss | |- ( ( G e. UHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ ( Vtx ` G ) ) |
| 27 | 1 26 | sylan | |- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ ( Vtx ` G ) ) |
| 28 | resiima | |- ( ( ( iEdg ` G ) ` i ) C_ ( Vtx ` G ) -> ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
|
| 29 | 27 28 | syl | |- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
| 30 | 20 23 29 | 3eqtr4d | |- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) |
| 31 | 30 | ralrimiva | |- ( ph -> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) |
| 32 | 17 31 | jca | |- ( ph -> ( ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) |
| 33 | f1oeq1 | |- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
|
| 34 | fveq1 | |- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( j ` i ) = ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) |
|
| 35 | 34 | fveqeq2d | |- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) |
| 36 | 35 | ralbidv | |- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) |
| 37 | 33 36 | anbi12d | |- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) <-> ( ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 38 | 13 32 37 | spcedv | |- ( ph -> E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) |
| 39 | fvex | |- ( Vtx ` G ) e. _V |
|
| 40 | resfunexg | |- ( ( Fun _I /\ ( Vtx ` G ) e. _V ) -> ( _I |` ( Vtx ` G ) ) e. _V ) |
|
| 41 | 8 39 40 | mp2an | |- ( _I |` ( Vtx ` G ) ) e. _V |
| 42 | 41 | a1i | |- ( ph -> ( _I |` ( Vtx ` G ) ) e. _V ) |
| 43 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 44 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 45 | 24 43 25 44 | isgrim | |- ( ( G e. UHGraph /\ H e. V /\ ( _I |` ( Vtx ` G ) ) e. _V ) -> ( ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) <-> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) ) ) |
| 46 | 1 2 42 45 | syl3anc | |- ( ph -> ( ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) <-> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) ) ) |
| 47 | 7 38 46 | mpbir2and | |- ( ph -> ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) ) |