This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrlic2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| dfgrlic2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| dfgrlic3.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| dfgrlic3.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| grilcbri2.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) | ||
| grilcbri2.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑋 ) ) | ||
| grilcbri2.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | ||
| grilcbri2.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | ||
| Assertion | grilcbri2 | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrlic2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | dfgrlic2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | dfgrlic3.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 4 | dfgrlic3.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 5 | grilcbri2.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) | |
| 6 | grilcbri2.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑋 ) ) | |
| 7 | grilcbri2.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | |
| 8 | grilcbri2.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | |
| 9 | brgrlic | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ ) | |
| 10 | grlimdmrel | ⊢ Rel dom GraphLocIso | |
| 11 | 10 | ovprc | ⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 GraphLocIso 𝐻 ) = ∅ ) |
| 12 | 11 | necon1ai | ⊢ ( ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 13 | 9 12 | sylbi | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 14 | eqid | ⊢ ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 15 | eqid | ⊢ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) | |
| 16 | eqid | ⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } | |
| 17 | eqid | ⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } | |
| 18 | 1 2 3 4 14 15 16 17 | dfgrlic3 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| 19 | eqidd | ⊢ ( 𝑣 = 𝑋 → 𝑗 = 𝑗 ) | |
| 20 | oveq2 | ⊢ ( 𝑣 = 𝑋 → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑋 ) ) | |
| 21 | 20 5 | eqtr4di | ⊢ ( 𝑣 = 𝑋 → ( 𝐺 ClNeighbVtx 𝑣 ) = 𝑁 ) |
| 22 | fveq2 | ⊢ ( 𝑣 = 𝑋 → ( 𝑓 ‘ 𝑣 ) = ( 𝑓 ‘ 𝑋 ) ) | |
| 23 | 22 | oveq2d | ⊢ ( 𝑣 = 𝑋 → ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑋 ) ) ) |
| 24 | 23 6 | eqtr4di | ⊢ ( 𝑣 = 𝑋 → ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = 𝑀 ) |
| 25 | 19 21 24 | f1oeq123d | ⊢ ( 𝑣 = 𝑋 → ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ↔ 𝑗 : 𝑁 –1-1-onto→ 𝑀 ) ) |
| 26 | eqidd | ⊢ ( 𝑣 = 𝑋 → 𝑔 = 𝑔 ) | |
| 27 | 21 | sseq2d | ⊢ ( 𝑣 = 𝑋 → ( ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 ) ) |
| 28 | 27 | rabbidv | ⊢ ( 𝑣 = 𝑋 → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) |
| 29 | 28 7 | eqtr4di | ⊢ ( 𝑣 = 𝑋 → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = 𝐾 ) |
| 30 | 24 | sseq2d | ⊢ ( 𝑣 = 𝑋 → ( ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ↔ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 ) ) |
| 31 | 30 | rabbidv | ⊢ ( 𝑣 = 𝑋 → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) |
| 32 | 31 8 | eqtr4di | ⊢ ( 𝑣 = 𝑋 → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } = 𝐿 ) |
| 33 | 26 29 32 | f1oeq123d | ⊢ ( 𝑣 = 𝑋 → ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ↔ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) |
| 34 | 29 | raleqdv | ⊢ ( 𝑣 = 𝑋 → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 35 | 33 34 | anbi12d | ⊢ ( 𝑣 = 𝑋 → ( ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 36 | 35 | exbidv | ⊢ ( 𝑣 = 𝑋 → ( ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 37 | 25 36 | anbi12d | ⊢ ( 𝑣 = 𝑋 → ( ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 38 | 37 | exbidv | ⊢ ( 𝑣 = 𝑋 → ( ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 39 | 38 | rspcv | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 40 | 39 | com12 | ⊢ ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 41 | 40 | a1i | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| 42 | 41 | anim2d | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 43 | 42 | eximdv | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 44 | 18 43 | sylbid | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 45 | 13 44 | mpcom | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑋 ∈ 𝑉 → ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |