This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrlic2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| dfgrlic2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| dfgrlic3.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| dfgrlic3.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| dfgrlic3.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | ||
| dfgrlic3.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) | ||
| dfgrlic3.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | ||
| dfgrlic3.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | ||
| Assertion | dfgrlic3 | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrlic2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | dfgrlic2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | dfgrlic3.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 4 | dfgrlic3.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 5 | dfgrlic3.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 6 | dfgrlic3.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) | |
| 7 | dfgrlic3.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | |
| 8 | dfgrlic3.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | |
| 9 | brgrlic | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ ) | |
| 10 | n0 | ⊢ ( ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | |
| 11 | 9 10 | bitri | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
| 12 | 1 2 5 6 3 4 7 8 | isgrlim2 | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| 13 | 12 | el3v3 | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| 14 | 13 | exbidv | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| 15 | 11 14 | bitrid | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑗 ( 𝑗 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑗 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |