This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrlic2.v | |- V = ( Vtx ` G ) |
|
| dfgrlic2.w | |- W = ( Vtx ` H ) |
||
| dfgrlic3.i | |- I = ( iEdg ` G ) |
||
| dfgrlic3.j | |- J = ( iEdg ` H ) |
||
| grilcbri2.n | |- N = ( G ClNeighbVtx X ) |
||
| grilcbri2.m | |- M = ( H ClNeighbVtx ( f ` X ) ) |
||
| grilcbri2.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
||
| grilcbri2.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
||
| Assertion | grilcbri2 | |- ( G ~=lgr H -> E. f ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrlic2.v | |- V = ( Vtx ` G ) |
|
| 2 | dfgrlic2.w | |- W = ( Vtx ` H ) |
|
| 3 | dfgrlic3.i | |- I = ( iEdg ` G ) |
|
| 4 | dfgrlic3.j | |- J = ( iEdg ` H ) |
|
| 5 | grilcbri2.n | |- N = ( G ClNeighbVtx X ) |
|
| 6 | grilcbri2.m | |- M = ( H ClNeighbVtx ( f ` X ) ) |
|
| 7 | grilcbri2.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
|
| 8 | grilcbri2.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
|
| 9 | brgrlic | |- ( G ~=lgr H <-> ( G GraphLocIso H ) =/= (/) ) |
|
| 10 | grlimdmrel | |- Rel dom GraphLocIso |
|
| 11 | 10 | ovprc | |- ( -. ( G e. _V /\ H e. _V ) -> ( G GraphLocIso H ) = (/) ) |
| 12 | 11 | necon1ai | |- ( ( G GraphLocIso H ) =/= (/) -> ( G e. _V /\ H e. _V ) ) |
| 13 | 9 12 | sylbi | |- ( G ~=lgr H -> ( G e. _V /\ H e. _V ) ) |
| 14 | eqid | |- ( G ClNeighbVtx v ) = ( G ClNeighbVtx v ) |
|
| 15 | eqid | |- ( H ClNeighbVtx ( f ` v ) ) = ( H ClNeighbVtx ( f ` v ) ) |
|
| 16 | eqid | |- { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } = { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } |
|
| 17 | eqid | |- { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } = { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } |
|
| 18 | 1 2 3 4 14 15 16 17 | dfgrlic3 | |- ( ( G e. _V /\ H e. _V ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| 19 | eqidd | |- ( v = X -> j = j ) |
|
| 20 | oveq2 | |- ( v = X -> ( G ClNeighbVtx v ) = ( G ClNeighbVtx X ) ) |
|
| 21 | 20 5 | eqtr4di | |- ( v = X -> ( G ClNeighbVtx v ) = N ) |
| 22 | fveq2 | |- ( v = X -> ( f ` v ) = ( f ` X ) ) |
|
| 23 | 22 | oveq2d | |- ( v = X -> ( H ClNeighbVtx ( f ` v ) ) = ( H ClNeighbVtx ( f ` X ) ) ) |
| 24 | 23 6 | eqtr4di | |- ( v = X -> ( H ClNeighbVtx ( f ` v ) ) = M ) |
| 25 | 19 21 24 | f1oeq123d | |- ( v = X -> ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) <-> j : N -1-1-onto-> M ) ) |
| 26 | eqidd | |- ( v = X -> g = g ) |
|
| 27 | 21 | sseq2d | |- ( v = X -> ( ( I ` x ) C_ ( G ClNeighbVtx v ) <-> ( I ` x ) C_ N ) ) |
| 28 | 27 | rabbidv | |- ( v = X -> { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } = { x e. dom I | ( I ` x ) C_ N } ) |
| 29 | 28 7 | eqtr4di | |- ( v = X -> { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } = K ) |
| 30 | 24 | sseq2d | |- ( v = X -> ( ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) <-> ( J ` x ) C_ M ) ) |
| 31 | 30 | rabbidv | |- ( v = X -> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } = { x e. dom J | ( J ` x ) C_ M } ) |
| 32 | 31 8 | eqtr4di | |- ( v = X -> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } = L ) |
| 33 | 26 29 32 | f1oeq123d | |- ( v = X -> ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } <-> g : K -1-1-onto-> L ) ) |
| 34 | 29 | raleqdv | |- ( v = X -> ( A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) <-> A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
| 35 | 33 34 | anbi12d | |- ( v = X -> ( ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) <-> ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
| 36 | 35 | exbidv | |- ( v = X -> ( E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) <-> E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
| 37 | 25 36 | anbi12d | |- ( v = X -> ( ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) <-> ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 38 | 37 | exbidv | |- ( v = X -> ( E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) <-> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 39 | 38 | rspcv | |- ( X e. V -> ( A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 40 | 39 | com12 | |- ( A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) -> ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 41 | 40 | a1i | |- ( ( G e. _V /\ H e. _V ) -> ( A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) -> ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| 42 | 41 | anim2d | |- ( ( G e. _V /\ H e. _V ) -> ( ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) -> ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) ) |
| 43 | 42 | eximdv | |- ( ( G e. _V /\ H e. _V ) -> ( E. f ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( f ` v ) ) /\ E. g ( g : { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. dom J | ( J ` x ) C_ ( H ClNeighbVtx ( f ` v ) ) } /\ A. i e. { x e. dom I | ( I ` x ) C_ ( G ClNeighbVtx v ) } ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) -> E. f ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) ) |
| 44 | 18 43 | sylbid | |- ( ( G e. _V /\ H e. _V ) -> ( G ~=lgr H -> E. f ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) ) |
| 45 | 13 44 | mpcom | |- ( G ~=lgr H -> E. f ( f : V -1-1-onto-> W /\ ( X e. V -> E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |