This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying S e. dom U ) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| glbval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| glbval.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| glbval.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | ||
| glbva.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| glbval.ss | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| Assertion | glbval | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | glbval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | glbval.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | glbval.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 5 | glbva.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 6 | glbval.ss | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 7 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → 𝐾 ∈ 𝑉 ) |
| 9 | 1 2 3 7 8 | glbfval | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → 𝐺 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) } ) ) |
| 10 | 9 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑆 ) = ( ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) } ) ‘ 𝑆 ) ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → 𝑆 ∈ dom 𝐺 ) | |
| 12 | 1 2 3 4 8 11 | glbeu | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ∃! 𝑥 ∈ 𝐵 𝜓 ) |
| 13 | raleq | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ) | |
| 14 | raleq | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ) ) | |
| 15 | 14 | imbi1d | ⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 17 | 13 16 | anbi12d | ⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) |
| 18 | 17 4 | bitr4di | ⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ 𝜓 ) ) |
| 19 | 18 | reubidv | ⊢ ( 𝑠 = 𝑆 → ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
| 20 | 11 12 19 | elabd | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → 𝑆 ∈ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) } ) |
| 21 | 20 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ( ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) } ) ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) ‘ 𝑆 ) ) |
| 22 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
| 23 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 24 | 23 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
| 25 | 22 24 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → 𝑆 ∈ 𝒫 𝐵 ) |
| 26 | 18 | riotabidv | ⊢ ( 𝑠 = 𝑆 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 27 | eqid | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) | |
| 28 | riotaex | ⊢ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ∈ V | |
| 29 | 26 27 28 | fvmpt | ⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 30 | 25 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 31 | 10 21 30 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 32 | ndmfv | ⊢ ( ¬ 𝑆 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑆 ) = ∅ ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑆 ) = ∅ ) |
| 34 | 1 2 3 4 5 | glbeldm | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) ) |
| 35 | 34 | biimprd | ⊢ ( 𝜑 → ( ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) → 𝑆 ∈ dom 𝐺 ) ) |
| 36 | 6 35 | mpand | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 → 𝑆 ∈ dom 𝐺 ) ) |
| 37 | 36 | con3dimp | ⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺 ) → ¬ ∃! 𝑥 ∈ 𝐵 𝜓 ) |
| 38 | riotaund | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐵 𝜓 → ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ∅ ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺 ) → ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ∅ ) |
| 40 | 33 39 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 41 | 31 40 | pm2.61dan | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |