This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| glbc.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| glbc.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| glbc.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) | ||
| Assertion | glbcl | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | glbc.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 3 | glbc.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 4 | glbc.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) | |
| 5 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 6 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) | |
| 7 | 1 5 2 3 4 | glbelss | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 8 | 1 5 2 6 3 7 | glbval | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) |
| 9 | 1 5 2 6 3 4 | glbeu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 10 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ∈ 𝐵 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ∈ 𝐵 ) |
| 12 | 8 11 | eqeltrd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |