This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| glbval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| glbval.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| glbval.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | ||
| glbva.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| glbval.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) | ||
| Assertion | glbeu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | glbval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | glbval.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | glbval.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 5 | glbva.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 6 | glbval.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) | |
| 7 | 1 2 3 4 5 | glbeldm | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) ) |
| 8 | 6 7 | mpbid | ⊢ ( 𝜑 → ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
| 9 | 8 | simprd | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 𝜓 ) |