This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbeldm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| glbeldm.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| glbeldm.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| glbeldm.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | ||
| glbeldm.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| Assertion | glbeldm | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbeldm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | glbeldm.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | glbeldm.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | glbeldm.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 5 | glbeldm.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 6 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 7 | 1 2 3 6 5 | glbdm | ⊢ ( 𝜑 → dom 𝐺 = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) } ) |
| 8 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) } ) ) |
| 9 | raleq | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ) | |
| 10 | raleq | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ) ) | |
| 11 | 10 | imbi1d | ⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 13 | 9 12 | anbi12d | ⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) |
| 14 | 13 | reubidv | ⊢ ( 𝑠 = 𝑆 → ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) |
| 15 | 4 | reubii | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 16 | 14 15 | bitr4di | ⊢ ( 𝑠 = 𝑆 → ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
| 17 | 16 | elrab | ⊢ ( 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) } ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
| 18 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 19 | 18 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
| 20 | 19 | anbi1i | ⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
| 21 | 17 20 | bitri | ⊢ ( 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) } ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
| 22 | 8 21 | bitrdi | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) ) |