This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gimco | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpIso 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpIso 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgim2 | ⊢ ( 𝐹 ∈ ( 𝑇 GrpIso 𝑈 ) ↔ ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ ◡ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ) ) | |
| 2 | isgim2 | ⊢ ( 𝐺 ∈ ( 𝑆 GrpIso 𝑇 ) ↔ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) | |
| 3 | ghmco | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) | |
| 4 | cnvco | ⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) | |
| 5 | ghmco | ⊢ ( ( ◡ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ) → ( ◡ 𝐺 ∘ ◡ 𝐹 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) | |
| 6 | 5 | ancoms | ⊢ ( ( ◡ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ∧ ◡ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) → ( ◡ 𝐺 ∘ ◡ 𝐹 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) |
| 7 | 4 6 | eqeltrid | ⊢ ( ( ◡ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ∧ ◡ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) → ◡ ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) |
| 8 | 3 7 | anim12i | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( ◡ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ∧ ◡ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ◡ ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) ) |
| 9 | 8 | an4s | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ ◡ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ) ∧ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ◡ ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) ) |
| 10 | 1 2 9 | syl2anb | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpIso 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ◡ ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) ) |
| 11 | isgim2 | ⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpIso 𝑈 ) ↔ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ◡ ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpIso 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpIso 𝑈 ) ) |