This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo . (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isgim2 | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 3 | 1 2 | isgim | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
| 4 | 1 2 | ghmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ↔ ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) ) |
| 5 | 4 | pm5.32i | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) ) |