This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 23-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gim0to0.a | ⊢ 𝐴 = ( Base ‘ 𝑅 ) | |
| gim0to0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| gim0to0.n | ⊢ 𝑁 = ( 0g ‘ 𝑆 ) | ||
| gim0to0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | gim0to0 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gim0to0.a | ⊢ 𝐴 = ( Base ‘ 𝑅 ) | |
| 2 | gim0to0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | gim0to0.n | ⊢ 𝑁 = ( 0g ‘ 𝑆 ) | |
| 4 | gim0to0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | gimghm | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 6 | 1 2 | gimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 7 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 9 | 5 8 | jca | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 10 | 9 | anim1i | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) ) |
| 11 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ↔ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ) |
| 13 | 1 2 4 3 | f1ghm0to0 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 ↔ 𝑋 = 0 ) ) |
| 14 | 12 13 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 ↔ 𝑋 = 0 ) ) |