This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gimco | |- ( ( F e. ( T GrpIso U ) /\ G e. ( S GrpIso T ) ) -> ( F o. G ) e. ( S GrpIso U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgim2 | |- ( F e. ( T GrpIso U ) <-> ( F e. ( T GrpHom U ) /\ `' F e. ( U GrpHom T ) ) ) |
|
| 2 | isgim2 | |- ( G e. ( S GrpIso T ) <-> ( G e. ( S GrpHom T ) /\ `' G e. ( T GrpHom S ) ) ) |
|
| 3 | ghmco | |- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
|
| 4 | cnvco | |- `' ( F o. G ) = ( `' G o. `' F ) |
|
| 5 | ghmco | |- ( ( `' G e. ( T GrpHom S ) /\ `' F e. ( U GrpHom T ) ) -> ( `' G o. `' F ) e. ( U GrpHom S ) ) |
|
| 6 | 5 | ancoms | |- ( ( `' F e. ( U GrpHom T ) /\ `' G e. ( T GrpHom S ) ) -> ( `' G o. `' F ) e. ( U GrpHom S ) ) |
| 7 | 4 6 | eqeltrid | |- ( ( `' F e. ( U GrpHom T ) /\ `' G e. ( T GrpHom S ) ) -> `' ( F o. G ) e. ( U GrpHom S ) ) |
| 8 | 3 7 | anim12i | |- ( ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) /\ ( `' F e. ( U GrpHom T ) /\ `' G e. ( T GrpHom S ) ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ `' ( F o. G ) e. ( U GrpHom S ) ) ) |
| 9 | 8 | an4s | |- ( ( ( F e. ( T GrpHom U ) /\ `' F e. ( U GrpHom T ) ) /\ ( G e. ( S GrpHom T ) /\ `' G e. ( T GrpHom S ) ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ `' ( F o. G ) e. ( U GrpHom S ) ) ) |
| 10 | 1 2 9 | syl2anb | |- ( ( F e. ( T GrpIso U ) /\ G e. ( S GrpIso T ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ `' ( F o. G ) e. ( U GrpHom S ) ) ) |
| 11 | isgim2 | |- ( ( F o. G ) e. ( S GrpIso U ) <-> ( ( F o. G ) e. ( S GrpHom U ) /\ `' ( F o. G ) e. ( U GrpHom S ) ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( F e. ( T GrpIso U ) /\ G e. ( S GrpIso T ) ) -> ( F o. G ) e. ( S GrpIso U ) ) |