This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicsubgen | ⊢ ( 𝑅 ≃𝑔 𝑆 → ( SubGrp ‘ 𝑅 ) ≈ ( SubGrp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic | ⊢ ( 𝑅 ≃𝑔 𝑆 ↔ ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝑅 ≃𝑔 𝑆 ↔ ∃ 𝑎 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ) |
| 4 | fvexd | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( SubGrp ‘ 𝑅 ) ∈ V ) | |
| 5 | fvexd | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( SubGrp ‘ 𝑆 ) ∈ V ) | |
| 6 | vex | ⊢ 𝑎 ∈ V | |
| 7 | 6 | imaex | ⊢ ( 𝑎 “ 𝑏 ) ∈ V |
| 8 | 7 | 2a1i | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑎 “ 𝑏 ) ∈ V ) ) |
| 9 | 6 | cnvex | ⊢ ◡ 𝑎 ∈ V |
| 10 | 9 | imaex | ⊢ ( ◡ 𝑎 “ 𝑐 ) ∈ V |
| 11 | 10 | 2a1i | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) → ( ◡ 𝑎 “ 𝑐 ) ∈ V ) ) |
| 12 | gimghm | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑎 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 13 | ghmima | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 14 | 12 13 | sylan | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 17 | 15 16 | gimf1o | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
| 18 | f1of1 | ⊢ ( 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ) |
| 20 | 15 | subgss | ⊢ ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) → 𝑏 ⊆ ( Base ‘ 𝑅 ) ) |
| 21 | f1imacnv | ⊢ ( ( 𝑎 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ∧ 𝑏 ⊆ ( Base ‘ 𝑅 ) ) → ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) = 𝑏 ) | |
| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) = 𝑏 ) |
| 23 | 22 | eqcomd | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑏 = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) |
| 24 | 14 23 | jca | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) ) |
| 25 | eleq1 | ⊢ ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ↔ ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ) ) | |
| 26 | imaeq2 | ⊢ ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( ◡ 𝑎 “ 𝑐 ) = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) | |
| 27 | 26 | eqeq2d | ⊢ ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ↔ 𝑏 = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) ) |
| 28 | 25 27 | anbi12d | ⊢ ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ↔ ( ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) ) ) |
| 29 | 24 28 | syl5ibrcom | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ) ) |
| 30 | 29 | impr | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ) → ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ) |
| 31 | ghmpreima | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 32 | 12 31 | sylan | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
| 33 | f1ofo | ⊢ ( 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ) | |
| 34 | 17 33 | syl | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ) |
| 35 | 16 | subgss | ⊢ ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) → 𝑐 ⊆ ( Base ‘ 𝑆 ) ) |
| 36 | foimacnv | ⊢ ( ( 𝑎 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ∧ 𝑐 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) = 𝑐 ) | |
| 37 | 34 35 36 | syl2an | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) = 𝑐 ) |
| 38 | 37 | eqcomd | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑐 = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) |
| 39 | 32 38 | jca | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) ) |
| 40 | eleq1 | ⊢ ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ) ) | |
| 41 | imaeq2 | ⊢ ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( 𝑎 “ 𝑏 ) = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) | |
| 42 | 41 | eqeq2d | ⊢ ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( 𝑐 = ( 𝑎 “ 𝑏 ) ↔ 𝑐 = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) ) |
| 43 | 40 42 | anbi12d | ⊢ ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ↔ ( ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) ) ) |
| 44 | 39 43 | syl5ibrcom | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ) ) |
| 45 | 44 | impr | ⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ) → ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ) |
| 46 | 30 45 | impbida | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ↔ ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ) ) |
| 47 | 4 5 8 11 46 | en2d | ⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( SubGrp ‘ 𝑅 ) ≈ ( SubGrp ‘ 𝑆 ) ) |
| 48 | 47 | exlimiv | ⊢ ( ∃ 𝑎 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( SubGrp ‘ 𝑅 ) ≈ ( SubGrp ‘ 𝑆 ) ) |
| 49 | 3 48 | sylbi | ⊢ ( 𝑅 ≃𝑔 𝑆 → ( SubGrp ‘ 𝑅 ) ≈ ( SubGrp ‘ 𝑆 ) ) |