This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicsubgen | |- ( R ~=g S -> ( SubGrp ` R ) ~~ ( SubGrp ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) |
|
| 2 | n0 | |- ( ( R GrpIso S ) =/= (/) <-> E. a a e. ( R GrpIso S ) ) |
|
| 3 | 1 2 | bitri | |- ( R ~=g S <-> E. a a e. ( R GrpIso S ) ) |
| 4 | fvexd | |- ( a e. ( R GrpIso S ) -> ( SubGrp ` R ) e. _V ) |
|
| 5 | fvexd | |- ( a e. ( R GrpIso S ) -> ( SubGrp ` S ) e. _V ) |
|
| 6 | vex | |- a e. _V |
|
| 7 | 6 | imaex | |- ( a " b ) e. _V |
| 8 | 7 | 2a1i | |- ( a e. ( R GrpIso S ) -> ( b e. ( SubGrp ` R ) -> ( a " b ) e. _V ) ) |
| 9 | 6 | cnvex | |- `' a e. _V |
| 10 | 9 | imaex | |- ( `' a " c ) e. _V |
| 11 | 10 | 2a1i | |- ( a e. ( R GrpIso S ) -> ( c e. ( SubGrp ` S ) -> ( `' a " c ) e. _V ) ) |
| 12 | gimghm | |- ( a e. ( R GrpIso S ) -> a e. ( R GrpHom S ) ) |
|
| 13 | ghmima | |- ( ( a e. ( R GrpHom S ) /\ b e. ( SubGrp ` R ) ) -> ( a " b ) e. ( SubGrp ` S ) ) |
|
| 14 | 12 13 | sylan | |- ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> ( a " b ) e. ( SubGrp ` S ) ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 17 | 15 16 | gimf1o | |- ( a e. ( R GrpIso S ) -> a : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
| 18 | f1of1 | |- ( a : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> a : ( Base ` R ) -1-1-> ( Base ` S ) ) |
|
| 19 | 17 18 | syl | |- ( a e. ( R GrpIso S ) -> a : ( Base ` R ) -1-1-> ( Base ` S ) ) |
| 20 | 15 | subgss | |- ( b e. ( SubGrp ` R ) -> b C_ ( Base ` R ) ) |
| 21 | f1imacnv | |- ( ( a : ( Base ` R ) -1-1-> ( Base ` S ) /\ b C_ ( Base ` R ) ) -> ( `' a " ( a " b ) ) = b ) |
|
| 22 | 19 20 21 | syl2an | |- ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> ( `' a " ( a " b ) ) = b ) |
| 23 | 22 | eqcomd | |- ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> b = ( `' a " ( a " b ) ) ) |
| 24 | 14 23 | jca | |- ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> ( ( a " b ) e. ( SubGrp ` S ) /\ b = ( `' a " ( a " b ) ) ) ) |
| 25 | eleq1 | |- ( c = ( a " b ) -> ( c e. ( SubGrp ` S ) <-> ( a " b ) e. ( SubGrp ` S ) ) ) |
|
| 26 | imaeq2 | |- ( c = ( a " b ) -> ( `' a " c ) = ( `' a " ( a " b ) ) ) |
|
| 27 | 26 | eqeq2d | |- ( c = ( a " b ) -> ( b = ( `' a " c ) <-> b = ( `' a " ( a " b ) ) ) ) |
| 28 | 25 27 | anbi12d | |- ( c = ( a " b ) -> ( ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) <-> ( ( a " b ) e. ( SubGrp ` S ) /\ b = ( `' a " ( a " b ) ) ) ) ) |
| 29 | 24 28 | syl5ibrcom | |- ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> ( c = ( a " b ) -> ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) ) ) |
| 30 | 29 | impr | |- ( ( a e. ( R GrpIso S ) /\ ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) ) -> ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) ) |
| 31 | ghmpreima | |- ( ( a e. ( R GrpHom S ) /\ c e. ( SubGrp ` S ) ) -> ( `' a " c ) e. ( SubGrp ` R ) ) |
|
| 32 | 12 31 | sylan | |- ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> ( `' a " c ) e. ( SubGrp ` R ) ) |
| 33 | f1ofo | |- ( a : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> a : ( Base ` R ) -onto-> ( Base ` S ) ) |
|
| 34 | 17 33 | syl | |- ( a e. ( R GrpIso S ) -> a : ( Base ` R ) -onto-> ( Base ` S ) ) |
| 35 | 16 | subgss | |- ( c e. ( SubGrp ` S ) -> c C_ ( Base ` S ) ) |
| 36 | foimacnv | |- ( ( a : ( Base ` R ) -onto-> ( Base ` S ) /\ c C_ ( Base ` S ) ) -> ( a " ( `' a " c ) ) = c ) |
|
| 37 | 34 35 36 | syl2an | |- ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> ( a " ( `' a " c ) ) = c ) |
| 38 | 37 | eqcomd | |- ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> c = ( a " ( `' a " c ) ) ) |
| 39 | 32 38 | jca | |- ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> ( ( `' a " c ) e. ( SubGrp ` R ) /\ c = ( a " ( `' a " c ) ) ) ) |
| 40 | eleq1 | |- ( b = ( `' a " c ) -> ( b e. ( SubGrp ` R ) <-> ( `' a " c ) e. ( SubGrp ` R ) ) ) |
|
| 41 | imaeq2 | |- ( b = ( `' a " c ) -> ( a " b ) = ( a " ( `' a " c ) ) ) |
|
| 42 | 41 | eqeq2d | |- ( b = ( `' a " c ) -> ( c = ( a " b ) <-> c = ( a " ( `' a " c ) ) ) ) |
| 43 | 40 42 | anbi12d | |- ( b = ( `' a " c ) -> ( ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) <-> ( ( `' a " c ) e. ( SubGrp ` R ) /\ c = ( a " ( `' a " c ) ) ) ) ) |
| 44 | 39 43 | syl5ibrcom | |- ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> ( b = ( `' a " c ) -> ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) ) ) |
| 45 | 44 | impr | |- ( ( a e. ( R GrpIso S ) /\ ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) ) -> ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) ) |
| 46 | 30 45 | impbida | |- ( a e. ( R GrpIso S ) -> ( ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) <-> ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) ) ) |
| 47 | 4 5 8 11 46 | en2d | |- ( a e. ( R GrpIso S ) -> ( SubGrp ` R ) ~~ ( SubGrp ` S ) ) |
| 48 | 47 | exlimiv | |- ( E. a a e. ( R GrpIso S ) -> ( SubGrp ` R ) ~~ ( SubGrp ` S ) ) |
| 49 | 3 48 | sylbi | |- ( R ~=g S -> ( SubGrp ` R ) ~~ ( SubGrp ` S ) ) |