This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isgim.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | gimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isgim.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | 1 2 | isgim | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |